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Abstract

We show that economic models of climate change produce climate
dynamics inconsistent with current climate science models: (i) the delay
between CO2 emissions and warming is much too long and (ii) positive
carbon cycle feedbacks are mostly absent. These inconsistencies lead
to biased economic policy advice. Controlling for how the economy
is represented, different climate models result in significantly different
optimal CO2 emissions. A long delay between emissions and warming
leads to optimal carbon prices that are too low and attaches too much
importance to the discount rate. Similarly we find that omitting posi-
tive carbon cycle feedbacks leads to optimal carbon prices that are too
low. We conclude it is important for policy purposes to bring economic
models in line with the state of the art in climate science and we make
practical suggestions for how to do so.
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1 Introduction

Climate change is arguably the quintessential dynamic problem in economics.
Carbon dioxide resides in the atmosphere for centuries after it is emitted, while
the climate system operates on timescales ranging from seconds to millennia.
Presumably climate dynamics must be accurately represented in economic
models of climate change, if appropriate policy prescriptions are to be made.
But do economic models get climate dynamics right? To the extent that they
don’t, does it matter?

This paper aims to make two contributions. First, we highlight some key
inconsistencies between how leading economic models of climate change rep-
resent climate dynamics and how the current generation of climate science
models does. Second, we explore the economic implications of these incon-
sistencies. Using the economic module of Nobel laureate William Nordhaus’
DICE model as a consistent representation of the economy, we quantify how
different models of the climate system affect optimal CO2 prices/taxes, CO2

emissions and temperatures.
We conduct this study in response to some recent work hinting at a sys-

temic problem. van Vuuren et al. (2011) have documented wide variations
in the climate dynamics simulated by a sample of economic models, without
analysing the economic implications. Calel and Stainforth (2017) and Rose
et al. (2017) have come up with similar findings and also showed that these
can result in variations in estimated economic impacts of climate change. In
response to Lemoine and Rudik (2017), who argue that inertia in the climate
system buys time for optimal CO2 prices to start low and grow slowly, Mat-
tauch et al. (2020) argue that the Lemoine and Rudik (2017) model is out
of line with the temperature impulse response to CO2 emissions in climate
science models, and that bringing it into line significantly alters the optimal
CO2 price path.1

We build on these studies in two main ways. First, we attempt a com-
1Dietz and Venmans (2019) note a similar discrepancy between DICE 2013 and climate

science models, without exploring the direct implications for CO2 prices.
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prehensive assessment of climate dynamics in a representative sample of six
leading economic models of climate change, a.k.a. integrated assessment mod-
els or IAMs, and we compare them with a canonical set of climate science
models. We include not only quantitative IAMs like DICE, but also analytical
IAMs built to yield closed-form solutions for optimal CO2 prices. Second, we
demonstrate the implications of different climate dynamics for economic policy
by computing optimal paths, using the economic module of DICE to control
for all other relevant differences.

In Section 2, we elaborate on how the leading IAMs fail to conform to
climate science models. We select six models, which we argue are represen-
tative of the climate economics field: the three most influential quantitative
IAMs (DICE, FUND and PAGE), together with three analytical IAMs from
prominent recent papers (Golosov et al., 2014; Lemoine and Rudik, 2017; Ger-
lagh and Liski, 2018). We test how their climate modules respond in two
experiments, compared with a large sample of 256 counterpart climate sci-
ence models. The first test is of how fast and how far temperature rises in
response to a CO2 emission impulse. We show that the climate science models
uniformly heat up very quickly to a constant, steady-state level, whereas the
climate modules of the IAMs heat up much more slowly and do not attain
a steady-state temperature within two centuries. The second test is of how
removal of atmospheric CO2 by carbon sinks (i.e. the oceans and biosphere)
changes as CO2 emissions continue. In the climate science models, carbon
sinks weaken. Their ability to remove CO2 from the atmosphere is diminished
by positive feedbacks in the carbon cycle, leading to more warming from given
emissions. By contrast, we show that CO2 removal by carbon sinks strength-
ens in most of the IAMs, giving a false impression of increasing absorptive
capacity.

Section 3 offers a general framework to understand the models of the car-
bon cycle and warming process featured in these two experiments, both from
climate science and economics. This framework enables us to decompose the
dynamic temperature response to a CO2 emission impulse in the models into
the dynamic response of (i) the atmospheric CO2 concentration and (ii) tem-
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perature. This decomposition demonstrates that the IAMs’ climate modules
vary widely in how fast a CO2 emission impulse decays and how much is re-
moved from the atmosphere in the long run, and that the decay behaviour
generally differs from the representative climate science model. In particular,
most of the IAMs remove CO2 from the atmosphere too slowly at first, which
would in fact result in a fast temperature response to a CO2 emission impulse,
all else being equal. The second part of the decomposition shows, however,
that almost all of the IAMs exhibit too much temperature inertia in response
to elevated atmospheric CO2. Thus the very slow temperature response to
emissions in the IAMs stems from too much temperature inertia.

In Section 4, we move on to exploring the economic implications of differ-
ent representations of the climate system, i.e. we turn to whether any of this
matters for climate policy. We couple various models of the climate system
with a common economic module, namely that of DICE. This is sufficient to
illustrate in controlled conditions that different climate models result in sig-
nificantly different optimal CO2 emissions, concentrations and temperatures,
both on emissions paths that maximise social welfare and on emissions paths
that minimise CO2 abatement costs subject to a 2◦C warming constraint (per
the UN Paris Agreement on Climate Change).

Since the various climate models differ in multiple ways, Section 5 isolates
the effects of (i) too long a delay between emissions and warming and (ii)
failing to simulate positive carbon cycle feedbacks. On the first, we find a
long delay between an emission impulse and warming leads to optimal carbon
prices that are too low. It also implies optimal carbon prices are too sensitive
to the discount rate, since the costs of global warming are erroneously placed
too far in the future. On the second, failing to simulate positive carbon cycle
feedbacks also leads to optimal carbon prices that are too low. The effect is
larger when cumulative CO2 uptake and temperature are high and overall it is
of comparable size to a long delay. Lastly it is worth noting that we specifically
find DICE 2016 heats up too much in the long run and this contributes to the
false impression that it is infeasible to limit warming to 2◦C as mandated by
the UN Paris Agreement.
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Section 6 concludes and offers a discussion. Climate dynamics matter.
Some other issues in climate economics still matter at least as much, such as
how to represent damages. But, unlike damages, the discrepancies between
IAMs and current climate science models are easily fixed. We make recom-
mendations on how to do so, depending on the complexity and purpose of
those models.

2 Two key tests of climate dynamics

Our first test is of how global mean surface temperature responds to an emis-
sion impulse of 100 gigatonnes of carbon in the models. The background atmo-
spheric CO2 concentration is held constant at 389 parts per million (the level
observed in 20102) and the equilibrium climate sensitivity is set to 3.1◦C. This
replicates a well-known experiment in climate science (Ricke and Caldeira,
2014), which has also been recommended by the US National Academy of Sci-
ences as a key test of the consistency of IAMs with current understanding in
climate science (National Academies of Sciences, Engineering, and Medicine,
2017). Appendix A contains further details of the experiment.

To produce this figure, we first compute the temperature impulse response
in 256 reduced-form climate science models, which we obtained from the liter-
ature.3 The set of models here corresponds to the so-called CMIP5 ensemble,
after the 5th Coupled Model Intercomparison Project of the World Climate
Research Programme. We then combine these impulse responses with those
of six leading IAMs, including the three most influential quantitative IAMs by
far – DICE, FUND and PAGE4 – and three leading analytical IAMs published

2https://data.giss.nasa.gov/modelforce/ghgases/Fig1A.ext.txt
3The set of 256 models is the product of all combinations of 16 carbon cycle models and 16

atmosphere-ocean general circulation models (AOGCMs). Many of the underlying models
are highly complex and run on super-computers. However, previous research in climate
science, which we build on here, shows that the dynamics they simulate for atmospheric
CO2 and global mean surface temperature can be fit with a high degree of precision using
reduced-form models (Geoffroy et al., 2013; Joos et al., 2013; Ricke and Caldeira, 2014),
which enables comparisons like this one.

4We include both DICE 2013 (Nordhaus, 2014) and DICE 2016 (Nordhaus,
2017), due to their divergent behaviour, FUND3.11 (developed by Anthoff and Tol:
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in recent years (Golosov et al., 2014; Gerlagh and Liski, 2018; Lemoine and
Rudik, 2017). While this sample of economic models is not exhaustive, we
argue it is representative of the field as a whole.5

Perhaps contrary to popular belief, the temperature response to a CO2

emission impulse in climate science models is fast. Figure 1 shows this. Peak-
ing around ten years after the emission impulse, temperature is then perma-
nently elevated. The response of the models resembles a step function. Dietz
and Venmans (2019) explain the underlying geophysics. In comparison, Fig-
ure 1 also shows there is far too much delay between the injection of CO2 and
the resulting peak warming in almost all the leading IAMs. The temperature
response peaks after 55 years in DICE 2013, 67 years in PAGE and 75 years
in the model of Gerlagh and Liski (GL18). In the central case studied by
Lemoine and Rudik (LR17) it takes 92 years, in FUND it takes 128 years and
in DICE 2016 it takes 180 years. The only model that does not simulate a
long delay is that of Golosov et al. (GHKT14), which assumes no delay in the
temperature response a priori. This turns out to be a reasonable approxima-
tion. After peaking, temperature begins to decrease again in the IAMs, which
is also contrary to the climate science models.

This experiment involves a fairly large instantaneous emission impulse of
100GtC, which is equivalent to about ten years of CO2 emissions from burn-
ing fossil fuels at current rates (Le Quéré et al., 2018). One may wonder
whether the conclusions we draw are robust to the size of the emission im-
pulse. Appendix A shows that they are. Qualitatively very similar results are

https://github.com/fund-model/MimiFUND.jl) and PAGE09 (Hope, 2013).
5As an example of their policy application, DICE, FUND and PAGE are used in the

United States to estimate the social cost of carbon – the marginal damage cost of CO2 –
for the purposes of cost-benefit analysis of federal regulations (Interagency Working Group
on Social Cost of Carbon, 2013). Of the analytical IAMs, the model of Golosov et al. has
been particularly widely adopted in subsequent work, with 683 citations according to Google
Scholar as of 10 August 2020. Few quantitative or analytical IAMs beyond these have been
built to conduct cost-benefit analysis, i.e. to compute welfare-maximising emissions paths
under endogenous climate damages/impacts from rising temperatures. The term IAM is
sometimes applied to a much wider set of models, including energy models built to assess
the costs of meeting pre-defined CO2 emissions budgets or targets. These models do not
have climate modules, however.
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Figure 1: Dynamic temperature response of 256 climate science models (the
CMIP5 ensemble) and seven IAMs to an instantaneous 100GtC emission
impulse against a constant background atmospheric CO2 concentration of
389ppm. The temperature response of the IAMs is much slower than the
climate science models, except Golosov et al. (2014). After 200 years, the
temperature response of the IAMs is often well outside the range of the cli-
mate science models. The CMIP5 model responses are emulated/fitted by
combining the Joos et al. (2013) carbon cycle model and the Geoffroy et al.
(2013) warming model.
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obtained from a much smaller emission impulse (1GtC) and a much larger one
(1000GtC). One may also wonder whether the rapid temperature impulse re-
sponse is consistent with observational data, not just a property of the climate
science models (noting these models are themselves calibrated on observa-
tions). Montamat and Stock (2020) provide evidence that this is the case,
regressing temperature on atmospheric CO2 using an instrumental variables
approach. Lastly, Appendix A also shows that the temperature impulse re-
sponses of the models featured in our experiment are qualitatively very similar
when background atmospheric CO2 is rising, rather than being held constant.

In Figure 2, we present the results of our second test. We run the models
under a scenario of constant greenhouse gas emissions6 and plot how yearly
uptake of CO2 by carbon sinks changes as the stock of atmospheric CO2 in-
creases. Again, a comparison like this was identified by the National Academy
of Sciences as a key test of IAMs (National Academies of Sciences, Engineer-
ing, and Medicine, 2017). The representative climate science model in this
experiment is called FAIR (Millar et al., 2017). FAIR is based on the same
reduced-form model used to approximate the climate science models in Figure
1, but adds additional carbon cycle feedbacks. We calibrate FAIR on the mean
climate science model depicted in Figure 1, and add carbon cycle feedbacks
calibrated on observational data since pre-industrial by Millar et al. (2017).
Appendix A contains further details of this experiment.

In FAIR, yearly uptake of CO2 by carbon sinks decreases as the atmospheric
CO2 concentration increases. Carbon sinks become less effective at removing
CO2 from the atmosphere, because of positive feedbacks in the carbon cycle.
In the absence of these feedbacks, yearly uptake of CO2 by carbon sinks would
increase with the atmospheric CO2 concentration, simply due to Henry’s Law.7

Instead, as atmospheric CO2 rises, the oceans, like the atmosphere, warm
up. As they do so, they keep less CO2 in solution, so more CO2 stays in

6Fixed at the 2015 level. Doing so enables us to clearly show the effect of carbon cycle
feedbacks, which would not be clear on an increasing emissions path, for reasons set out
just below.

7The amount of dissolved gas in a liquid (i.e. the oceans) is proportional to its partial
pressure above the liquid (i.e. in the atmosphere).
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Figure 2: Yearly uptake of CO2 by carbon sinks as a function of atmospheric
CO2 in FAIR and seven IAMs under constant 2015 greenhouse gas emissions.
Each marker represents five years. FAIR shows yearly uptake decreases, while
the IAMs have it increasing, except FUND.
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the atmosphere, further increasing temperature. CO2 reacts with seawater
to form carbonic acid, so the more CO2 the oceans absorb cumulatively, the
more acidic they become, which also limits their ability to absorb carbon
(Revelle and Suess, 1957). Furthermore, climate change is expected to reduce
net uptake of CO2 by the biosphere.8 Most of the IAMs do not take these
feedbacks into account, however. This explains why in these models there is an
increasing relationship between atmospheric CO2 and annual CO2 removal by
carbon sinks. The exceptions are FUND and PAGE, both of which incorporate
feedbacks from carbon sinks to atmospheric CO2/warming. In FUND but
not in PAGE, these feedbacks are sufficient to produce a decreasing overall
relationship between atmospheric CO2 and CO2 removal by sinks.

There is reason to believe these two discrepancies between the current crop
of climate science models and the leading IAMs could matter for policy pre-
scriptions. First, given the centrality of discounting in climate economics (Ar-
row et al., 2013; Gollier, 2012; Nordhaus, 2007; Stern, 2007), the fact that IAMs
underestimate warming in the near future in response to a CO2 emission im-
pulse could significantly impact the welfare evaluation of emissions abatement
responses. According to the climate science models, CO2 emissions elevate
temperatures almost immediately. Avoiding those emissions would therefore
pay an almost immediate dividend. Second, ignoring the diminishing marginal
effectiveness of carbon sinks underestimates the climate response to CO2 emis-
sions in the long run, which again impacts the welfare evaluation of emissions
abatement responses.

8Changes to the ocean circulation could also reduce CO2 uptake (Friedlingstein et al.,
2006). Not included here are further positive greenhouse gas feedbacks such as permafrost
thawing, which tend instead to be classed as tipping points in the climate system (Lenton
et al., 2008).
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3 Models of the carbon cycle and temperature
dynamics

How do the models used in the previous section – both the climate science
models and the IAMs – actually work? In this section, we offer a general
framework for understanding this using impulse response functions (see e.g.
Maier-Reimer and Hasselmann, 1987). The framework enables us to decom-
pose the temperature response to a CO2 emission impulse in the models into
the response of (i) the atmospheric CO2 concentration and (ii) temperature.
By describing the models in more detail, we also set the scene for our subse-
quent economic analysis, which is based on coupling different climate models
with the DICE economic module.

Start by writing the temperature impulse response to an initial CO2 emis-
sion as plotted in Figure 1 as:

∆Tt
∆E1

=
t∑

s=1

∆Tt
∆Fs

∆Fs
∆Ms

∆Ms

∆E1
, (1)

where Tt is the increase in global mean temperature at time t relative to pre-
industrial, E is CO2 emissions, F is radiative forcing andM is the atmospheric
CO2 concentration.

The temperature impulse response at time t to a CO2 emission at time
t = 1 is thus the sum over the intervening period of the product of the CO2

concentration impulse response to the emission, ∆Ms/∆E1, the within-period
change in forcing in response to atmospheric CO2, ∆Fs/∆Ms, and lastly the
change in temperature in response to the additional forcing, ∆Tt/∆Fs. The
CO2 concentration impulse response to the emission is determined by a carbon
cycle model, while the forcing and temperature response to changing atmo-
spheric CO2 is determined by a warming model. Let us now scrutinise these
two models in turn.
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The carbon cycle model

Most simple models of the carbon cycle partition the system into a series
of reservoirs or boxes, between which carbon is exchanged. The diffusion of
carbon between different boxes (e.g. the atmosphere, biosphere, and upper and
lower oceans) can be modelled by a system of difference equations of the form

mt = Amt−1 + bEt, (2)

where the vector mt contains the stocks of carbon in each of n boxes at the
end of period t and A is a matrix, whose elements describe the speed of
diffusion between the boxes. The vector b contains the shares of emissions
that enter each of the boxes. As the matrix A and the vector b are constant,
(2) corresponds to a linear carbon cycle.

The atmospheric CO2 concentrationMt ≡ d′mt, where d is the vector that
maps the contents of the various boxes into the stock of atmospheric carbon.
Then

Mt = d′
(

AtM0 +
t∑

s=1
At−sbEs

)
, (3)

where M0 is the initial concentration. In Appendix B, we show how spectral
decomposition can be used to obtain the CO2 concentration impulse response
function:

∆Mt

∆Es
= d′At−sb =

t∑
s=1

n∑
i=1

ψiλ
t−s
i . (4)

The λi ∈ (0, 1] are the eigenvalues of A, which we assume to be real and
in decreasing order of magnitude. These are inversely proportional to how
long CO2 resides in each of the boxes. The constants ψi > 0 represent the
contribution of each box to the atmospheric carbon stock. If a proportion of
emissions stays in the atmosphere forever, λ1 = 1 for the box pertaining to
that proportion (i = 1) and the impulse response is the sum of the permanent
and transitory components,

∆Mt

∆Es
= ψ1 +

n∑
i=2

ψiλ
t−s
i . (5)
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Equation (5) fully determines any linear carbon cycle model with any number
of boxes, which explains why such impulse response functions are commonly
used in climate science to represent and compare models of varying degrees of
complexity.

Table 1 applies this framework to the carbon cycle models compared in the
previous section. Joos et al. (2013) is the representative climate science model,
i.e. the model used to fit the CMIP5 ensemble. While the number of boxes
varies, most models are based on a structure in which there is a permanent
box, into which roughly 1/5 to 1/6 of a CO2 emission impulse flows, a very
slowly decaying box, and one or more boxes that decay much more quickly.
However, there is significant variation in both the shares of emissions flowing
into each box and the residence time (specifically the half-life) of CO2 in each
of the temporary boxes.9 Appendix B contains further details of the models’
carbon cycles.

What CO2 dynamics do these different representations give rise to? Figure
3 plots the CO2 impulse responses of the various models. The impulse size is
100GtC as in the experiments above. The figure shows that the differences
between the models’ structures and parameters cause significant differences in
their CO2 impulse responses. Some models such as GL18 remove CO2 very
quickly initially. Others such as PAGE remove it very slowly. Over the first
50 years, however, most IAMs remove CO2 more slowly than the best fit of
the CMIP5 ensemble, which in itself would tend to produce a fast temperature
impulse response. After a couple of centuries, some IAMs such as LR17 remove
most of the CO2 emission impulse. Others such as DICE 2016 and FUND
remove relatively little. By then, there does not appear to be a systematic
bias between the IAMs and the best fit of CMIP5. Overall, few of the IAMs
resemble the best fit of CMIP5, however.

So far we have not addressed weakening carbon sinks. It is clear these are
not represented by linear models, since the CO2 impulse response in Equation

9The shares flowing into the three boxes of the GL18 model do not add up to one,
since only 94% of box 1 pertains to the atmosphere (the rest is assumed to be absorbed
immediately by the upper ocean). The half-life of CO2 in box 2 of DICE 2016 is much larger
than in earlier versions of DICE, or in the other models shown.
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Figure 3: Removal of a 100GtC emission impulse (47ppm CO2) in climate
science models and seven IAMs against a constant background atmospheric
CO2 concentration of 389ppm. There are big differences between the IAMs.
Few of the IAMs approximate the best fit of the climate science model dis-
tribution. Note that FAIR removes less CO2 from the atmosphere against a
higher background concentration due to positive carbon cycle feedbacks.
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(4) does not depend on cumulative absorbed carbon, or temperature. Sim-
ple non-linear models of carbon cycle feedbacks include NICCS (Hooss et al.,
2001) and FAIR (Millar et al., 2017). FAIR, which is now widely used, simu-
lates weakening carbon sinks by extending the four-box carbon cycle of Joos
et al. (2013). Relegating the details to Appendix A, in essence FAIR works
by reducing the rate at which carbon is removed from the atmosphere using a
scaling factor α (i.e. replace the λi with λi/α), which is increasing in cumula-
tive carbon uptake and temperature. Figure 3 shows FAIR’s positive carbon
cycle feedbacks in action: less CO2 is removed from the atmosphere when the
emission impulse is against a higher (year 2100) background concentration of
CO2.10

Radiative forcing and temperature dynamics

The relationship between atmospheric CO2 and forcing is logarithmic, since
CO2 becomes less effective at absorbing outgoing radiation at higher concen-
trations. The change in forcing in response to atmospheric CO2 can be written
as

∆Fs
∆Ms

= F2×CO2

ln 2
1
Ms

, (6)

where F2×CO2 is the radiative forcing resulting from doubling atmospheric
CO2. This partly determines the equilibrium climate sensitivity, which we
hold constant across all the models in order to isolate the effect of short- and
medium-run dynamics (see Appendix B). It is important to bear in mind that
total radiative forcing is the sum of forcing from CO2 and from other green-
house gases and forcing agents. Typically these other gases/forcing agents are
exogenous in the models,11 but their role is not trivial12 and must be prop-
erly accounted for. Below we show that failing to do so in some models gives

10Corresponding with the year 2100 on the IPCC’s RCP4.5 scenario. RCP stands for
Representative Concentration Pathway. IPCC developed four RCP scenarios for the Fifth
Assessment Report (Moss et al., 2010).

11In FUND and PAGE, some of the other greenhouse gases, such as methane and nitrous
oxide, are explicitly modelled.

12The contribution to total radiative forcing of gases/drivers other than CO2 is about
25% currently (IPCC, 2013).
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misleading results.
Just like carbon cycle models, simple warming models typically parti-

tion the system into boxes, between which heat is exchanged (e.g. the at-
mosphere/upper ocean and deep ocean). Thus we can again use spectral de-
composition to obtain an analogous expression for the temperature response
to forcing:

∆Tt
∆Fs

=
t∑

s=1

2∑
i=1

ψTi λ
T t−s
i , (7)

where ψTi and λTi denote respectively the shares/weights and eigenvalues of the
heat boxes (the superscript T just indicates that these apply to temperature).

Table 2 summarises the dynamics of the various warming models that map
forcing into temperature. Geoffroy et al. (2013) is the representative climate
science model used to fit the CMIP5 ensemble. Both DICE and Geoffroy et al.
(2013) have two boxes representing the temperature of the atmosphere/upper
oceans and the deep oceans respectively. However, critically DICE displays a
much more sluggish response of temperature to radiative forcing than Geoffroy
et al. (2013), especially as the fast box of Geoffroy et al. has a half-life of only
3 years.

Figure 4 uses Equations (6) and (7) to plot the dynamic temperature re-
sponse of the models to a constant increase in atmospheric CO2 of 100GtC
(47ppm). This is therefore the second element of the decomposition of the tem-
perature response to an emission impulse. With the exception of GHKT14, all
of the IAMs exhibit a more sluggish temperature response than the best fit of
the CMIP5 ensemble. The temperature response of LR17 is particularly slow.
After 200 years, temperature is higher in DICE 2013, DICE 2016 and FUND,
while LR17 and PAGE are close to the best fit of the CMIP5 ensemble at that
moment. The GHKT14 model shows an immediate, permanent increase in
temperature. It over-predicts temperature compared with the best fit of the
CMIP5 ensemble.
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Table 2: Comparing linear temperature-forcing responses
Time step Box 1 Box 2
(years)

DICE 2016 5 9.9%; 25 years 0.2%; 150 years
DICE 2013 5 9.9%; 23 years 0.2%; 148 years
FUND 1 100%; 31 years
PAGE varies 100%; 24 years
GHKT14 10 n.a. n.a.
GL18 10 100%; 34 years
LR17 1 100%; 50 years
Geoffroy et al. (2013) / best 1 13.5%; 3 years 0.2%; 167 years
fit CMIP5 ensemble

Key: The first figure in each cell is the weight of each mode and the second figure
the half-life for each mode. PAGE models regional temperature and calculates
global temperature as the area-weighted average. GHKT14 effectively assume that
temperature is driven by equilibrium climate sensitivity according to Arrhenius’ law
and do not have any lag between forcing and temperature.

Figure 4: Dynamic temperature response of the best-fit climate model and
seven IAMs to a constant increase in atmospheric CO2 of 100 GtC (47ppm
CO2). The IAMs respond much more slowly to elevated CO2 than the best-fit
climate model, except GHKT14.
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Going back to Figure 1, the IAMs (excluding GHKT14) warm up too
slowly in response to the emission impulse. This impulse response is obtained
by convoluting atmospheric CO2 decay/removal as plotted in Figure 3 with
temperature inertia as plotted in Figure 4. Thus the analysis of this section
shows that the sluggish temperature response to the emission impulse is due
to too much temperature inertia in response to elevated atmospheric CO2. If
anything, the IAMs have too little CO2 decay, but this does not compensate for
the inertia. In the best fit of the CMIP5 ensemble, temperature inertia almost
exactly offsets CO2 decay. As a result, the CMIP5 temperature response
resembles a step function.

4 Economic policies with different climate mod-
els

In this and the following section, we evaluate what difference the model of the
climate system makes for economic policies. We focus on two such policies:
(i) optimal emissions that maximise social welfare and (ii) a representative
policy run in the context of the United Nations climate framework that limits
warming to 2◦C at minimum discounted abatement cost. The latter path is
sometimes described as an exercise in cost-effectiveness analysis (as opposed
to (i), which is an exercise in cost-benefit analysis) and is a core use of IAMs
by IPCC (see Clarke et al., 2014).13

To perform this evaluation, we need to make a controlled comparison,
in which the models are identical in all respects except how they represent
the dynamics of the carbon cycle and warming process. Control is achieved
by using the DICE 2016 economic and welfare modules as a common base,
and coupling it with different models of the climate system (Table 3).14 We

13Abatement cost minimisation subject to a temperature constraint is the same as welfare
maximisation subject to a temperature constraint and ignoring climate damages.

14Readers are referred toWilliam Nordhaus’ web resources for a comprehensive description
of the DICE 2016 economic module and, unless otherwise specified, the version we use is
unchanged. See https://sites.google.com/site/williamdnordhaus/dice-rice.
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drop the FUND and PAGE models here, due to the practical difficulties of
coupling these more complex IAMs with the DICE 2016 economy. Note that
temperature is only implicit in GHKT14 and GL18, however it can be backed
out using assumptions explicitly stated in these papers.

Table 3: List and description of models used for economic evaluation
Model Description
DICE 2016 Standard DICE 2016 economy and climate
DICE-DICE 2013 DICE 2016 economy with the DICE 2013 climate module
DICE-GHKT14 DICE 2016 economy with the Golosov et al. (2014)

climate module
DICE-GL18 DICE 2016 economy with the Gerlagh and Liski (2018)

climate module
DICE-LR17 DICE 2016 economy with the Lemoine and Rudik (2017)

climate module
DICE-FAIR-Geoffroy DICE 2016 economy with the FAIR carbon cycle and

the Geoffroy et al. (2013) warming model
DICE-Joos-Geoffroy DICE 2016 economy with the Joos et al. (2013) carbon

cycle and the Geoffroy et al. (2013) warming model

Figure 5 plots welfare-maximising carbon prices, emissions and temper-
atures (left column) from DICE 2016, DICE-FAIR-Geoffroy (i.e. the repre-
sentative or benchmark climate science model, coupled with the DICE econ-
omy), DICE-DICE 2013, DICE-GHKT14, DICE-GL18 and DICE-LR17. It
is immediately apparent that the models differ significantly in their welfare-
maximising paths. Initial carbon prices range from $11/tCO2 in DICE-LR17
to $57 in DICE-GHKT14, with an initial carbon price of $30 in the bench-
mark DICE-FAIR-Geoffroy model, and $37 in standard DICE 2016. These
differences grow over time, such that by 2100 the range is $77-358/tCO2.

Welfare-maximising CO2 emissions and temperatures also vary widely. Ini-
tial CO2 emissions range from 33GtCO2 in DICE-GHKT14 to 40GtCO2 in
DICE-LR17, while in 2100 they range from nearly zero to 50GtCO2. Optimal
warming by the end of the century ranges from just 2.0◦C in DICE-LR17 to
4.0◦C in DICE-GHKT14. Optimal warming in the benchmark DICE-FAIR-
Geoffroy model is 3.0◦C in 2100. Notice that optimal warming in 2100 is
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lowest in DICE-LR17, despite this model having the lowest carbon prices and
the highest emissions. This is directly attributable to its slow and low temper-
ature impulse response to CO2 emissions, as shown in Figure 1. Notice also
the high initial starting temperature in DICE-GHKT14. Temperature is only
implicit in GHKT14, but can be backed out from their assumptions about
the atmospheric carbon stock and damages. Their assumption of no delay
between emissions and warming, coupled with a calibration that ignored the
contribution of non-CO2 greenhouse gases to warming, leads to this artefactual
result.

Figure 5 also compares models on a path that limits warming to 2◦C at
minimum discounted abatement cost (right column). Similar to the mod-
els’ welfare-maximising paths, we observe large differences in their 2◦C cost-
minimising paths. Naturally, given the warming constraint, the differences
are particularly evident in carbon prices and emissions. Initial carbon prices
vary from $13/tCO2 in DICE-LR17 to $143 in standard DICE 2016. By mid-
century the range of carbon prices peaks at $406/tCO2 between these mod-
els. Initial CO2 emissions range from 26GtCO2 in DICE 2016 to 40GtCO2

in DICE-LR17. Limiting warming to 2◦C is infeasible in DICE-GHKT14, for
the reasons mentioned above. In order to limit warming to 2◦C, emissions
must eventually be negative in all models, but the time at which ‘net zero’
is crossed ranges from just before 2050 in DICE 2016 to just after 2100 in
DICE-LR17. Although warming is limited to 2◦C, the temperature trajectory
shows significant variation across the models, particularly in mid-century. The
range is 1.2-1.8◦C in 2050, for instance. Note these 2◦C cost-minimising paths
are obtained assuming CO2 emissions from land-use change and forestry, as
well as radiative forcing from other greenhouse gases and atmospheric agents,
follow the IPCC RCP2.6 scenario, which is the only RCP scenario consistent
with the 2◦C target. We will return to this point below.
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Figure 5: Welfare-maximising (left) and cost-minimising (right) paths from
different climate models coupled with the DICE 2016 economy. Top row –
carbon prices; middle row – CO2 emissions; bottom row – warming. The
models produce very different carbon price paths, resulting in very different
CO2 emissions and temperature paths.
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5 Warming delay, positive carbon cycle feed-
backs and further economic analysis

While Figure 5 illustrates that climate dynamics matter for economic policies,
it does not fully illuminate the role of the issues identified in Section 2, namely23



the excessive delay between a CO2 emission impulse and warming, and the
omission of positive feedbacks in the carbon cycle. That is because the climate
modules considered differ in multiple respects. Therefore these two issues are
explored further in Tables 4 and 5.

To isolate the effect of excessive delay between a CO2 emission impulse
and warming, we construct two further artefact models, built on the DICE-
Joos-Geoffroy model used to represent the CMIP5 models in Figure 1. These
two models exhibit the same long-run temperature response to a CO2 emis-
sion impulse as DICE-Joos-Geoffroy, but reach that long-run response at very
different speeds; far too slowly in comparison with the climate science models,
more in line with the IAMs. The reason we construct these two further mod-
els is that, even with the same equilibrium climate sensitivity, the different
climate models compared above exhibit not only different short- and medium-
run temperature dynamics, they also exhibit different long-run temperature
responses (as is clear from Figure 1). The new ‘Delay 56’ model is so called,
because it exhibits a delay between the CO2 emission impulse and peak warm-
ing that is five times longer than DICE-Joos-Geoffroy (56 years, rather than
11.2 years). The ‘Delay 112’ model exhibits a corresponding warming delay
that is ten times longer. Appendix B provides further details of these new
models.

Table 4 shows that on the welfare-maximising path an excessive delay leads
to lower carbon prices throughout. The 2020 carbon price falls from $27/tCO2

for the short delay (DICE-Joos-Geoffroy) to $23 for the 56-year delay and $18
for the 112-year delay (compare rows 2-4). These differences grow over the
course of the century. By 2100, moving from a 10-year delay to a 112-year
delay reduces the optimal carbon price by $75, or 38%. With lower carbon
prices naturally come higher CO2 emissions, but not higher temperatures,
since a longer delay means that it takes much longer for the warming effect
of these additional emissions to be realised. Table 5 shows that on the 2◦C
cost-minimising path an excessive delay leads to lower carbon prices in 2020
and 2050. The effect is somewhat smaller than on the optimal path, since
the temperature constraint binds and leaves less room for manoeuvre. Lower
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carbon prices again result in higher emissions, but the delay means this does
not translate into higher temperatures; on the contrary.

An implication of these results is that the optimal path may be less sensitive
to assumptions about the discount rate than previously thought. Table 6
shows this is indeed the case. We ran DICE-Joos-Geoffroy and the Delay 56
and 112 variants under standard DICE assumptions about the social discount
rate (a pure rate of time preference of 1.5% and an elasticity of marginal
utility of consumption of 1.45), and assuming the social planner uses lower
values (PRTP=0.1%; elasticity of marginal utility of 1). We call the latter
‘public’ discounting.15 The parameter values are the same as in the Stern
Review (Stern, 2007). With a representative initial growth rate of global mean
consumption per capita of 2.5%, the standard DICE discount rate is 5.1% while
the ‘public’ discount rate applied to climate policy is 3.5%. Table 6 shows that
the increase in the 2020 optimal carbon price brought about by switching from
standard to public discounting is 68% in Delay 112, but only 50% in DICE-
Joos-Geoffroy with the short delay. In 2100 the increases are 51% and 38%
respectively.

To isolate how positive carbon cycle feedbacks affect model paths, we
now compare DICE-FAIR-Geoffroy and DICE-Joos-Geoffroy (rows 1 and 2).
DICE-FAIR-Geoffroy includes such feedbacks, while DICE-Joos-Geoffroy does
not. These two models are otherwise identical. Introducing the positive carbon
cycle feedbacks results in a higher optimal carbon price. In 2020, the optimal
carbon price in DICE-FAIR-Geoffroy is $29.68/tCO2, $2.70 above the optimal
carbon price in DICE-Joos-Geoffroy. Hence the effect is not quantitatively
large in the short run. However, it is in the nature of the carbon cycle feed-
backs that they have a larger effect, the higher is cumulative absorbed carbon,
and temperature, so we see the gap between the models’ optimal carbon prices
widening steadily until by 2100 it is $83/tCO2. Higher optimal carbon prices
result in lower emissions in DICE-FAIR-Geoffroy and this in turn results in

15We assume private agents keep the standard DICE parameters for invest-
ment/consumption decisions, but that the social planner sets carbon prices using the lower
rate (van der Ploeg and Rezai, 2019).
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lower 21st-century warming.16 Reduced CO2 uptake by carbon sinks reduces
the cumulative emissions budget for limiting warming to 2◦C in DICE-FAIR-
Geoffroy, so the 2◦C cost-minimising carbon price is also higher, resulting in
lower emissions and, at least in this century, lower temperatures.

We complete this section with further analysis of two issues. Firstly, Tables
4 and 5 show that DICE 2016 yields higher carbon prices than the benchmark
climate science model, DICE-FAIR-Geoffroy (compare rows 1 and 5), partic-
ularly on a 2◦C cost-minimising path. This leads to lower emissions in DICE
2016, yet temperatures end up being higher. Appendix C provides some fur-
ther analysis of what is behind the difference between standard DICE 2016
and DICE-FAIR-Geoffroy. Three factors are at play, namely differences in
(a) temperature dynamics, (b) removal of atmospheric CO2 (under constant
background atmospheric CO2) and (c) assumptions about positive carbon cy-
cle feedbacks. In Appendix C, we apportion the difference between (a)-(c) and
find that the main driver of different temperatures is (a) the tendency of DICE
2016 to heat up too much in the long run.

Secondly, previous work with DICE 2016 found it is infeasible to limit
warming to 2◦C (Nordhaus, 2017).17 Our analysis suggests this is not the case
if (a) an appropriate assumption is made about contributions to radiative forc-
ing beyond energy/industrial CO2 and (b) the climate system is appropriately
responsive to CO2 emissions. In our 2◦C cost-minimising runs, we substitute
standard DICE 2016 exogenous emissions of CO2 from land-use change and
forestry with corresponding emissions from the IPCC’s RCP2.6 scenario18,
which are lower and more consistent with limiting warming to 2◦C. We do the
same for exogenous radiative forcing from other greenhouse gases and atmo-
spheric agents. This explains why we find it is feasible to limit warming to 2◦C
in DICE 2016. However, Figure 5 and Table 5 show that, while it is feasible in

16Warming is higher in DICE-FAIR-Geoffroy in the longer run, due to the carbon cycle
feedbacks’ continuing effect. The crossing point is 2200 (not shown). In steady state, optimal
warming in DICE-FAIR-Geoffroy is exactly 3◦C, while in DICE-Joos-Geoffroy it peaks at
about 2.83◦C.

17Under the constraint of no negative emissions technology in the first several decades.
18Specifically when combined with the SSP1 socio-economic scenario; see Moss et al.

(2010).
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DICE 2016, it is still very expensive. It is much less expensive in DICE-FAIR-
Geoffroy, due to its more immediate and ultimately lower temperature impulse
response to CO2 emissions. Appendix C provides some further analysis of this
issue too.

6 Conclusions and discussion

We have investigated atmospheric carbon and temperature dynamics in cli-
mate models from both climate science and economics. Closely following ex-
perimental protocols developed in climate science, we have used reduced-form
impulse response functions built to emulate the behaviour of an ensemble of
highly non-linear and large-scale Earth System models, and we have compared
these with a representative sample of IAMs from the economic literature. We
have not been concerned with fitting our reduced-form models to historical
data. This would have been a different exercise and the resulting model would
be of limited relevance for the analysis of climate policy today. A model cal-
ibrated on historical conditions and designed to reproduce the behaviour of
past climates is not a reliable model of the future climate. One important
reason why is that positive feedbacks in the uptake of atmospheric carbon,
studied in some depth in this paper, kick in more strongly when cumulative
carbon uptake and temperature are already high (e.g. Millar et al., 2017). This
partly explains why climate scientists tend to use the dynamic behaviour of
Earth System models in simulation experiments in contemporary and future
climatic conditions as their benchmark when building reduced-form models,
not past, observed changes in atmospheric carbon and temperature.19

There is wide variation in how IAMs simulate the evolution of atmospheric
carbon and temperature, but almost all of them are unified in one feature:
they show too sluggish a temperature response to an impulse change in CO2

19That being said, Millar et al. (2017) show that the FAIR model, with its flexible repre-
sentation of positive carbon cycle feedbacks, closely tracks observed global mean temperature
when run with estimated historical greenhouse gas emissions. In addition, Montamat and
Stock (2020) provide supporting evidence of the fast temperature impulse response to CO2
emissions, taking an econometric approach to observational data.
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emissions compared with the climate science models. This sluggish tempera-
ture response in the IAMs is primarily due to too much temperature inertia in
response to elevated atmospheric CO2, rather than CO2 decaying too quickly
(on the contrary, in most IAMs it decays too slowly). Besides the sluggish tem-
perature response to CO2 emissions, we have also scrutinised the treatment of
carbon sinks in the models. In climate science models, carbon sinks weaken
due to positive carbon cycle feedbacks. Most IAMs do not demonstrate this
property, however.

These discrepancies can cause IAMs to yield misleading policy implica-
tions. Controlling for the specification of the economy and welfare using the
DICE 2016 economic module, we have found IAMs’ climate modules deliver
carbon prices, emissions and temperature paths that vary widely and that dif-
fer from the benchmark model in climate science. We explored both welfare-
maximising carbon prices and carbon prices that ensure a 2◦C temperature
target is achieved at minimum discounted abatement cost. Some models de-
liver carbon prices that are higher than the benchmark model, some lower.
Further exploring the causes of these differences, we found that a sluggish
temperature response to CO2 emissions – excessive delay – leads to carbon
prices that are too low and that are too sensitive to the choice of discount
rate, since the costs of global warming are erroneously placed too far in the
future. We also found that failing to account for positive carbon cycle feed-
backs leads to carbon prices that are too low, especially when atmospheric
CO2 is high. But even if the temperature response to CO2 emissions is too
slow and positive carbon cycle feedbacks are omitted, carbon prices can still
be too high in IAMs, as appears to be the case in DICE 2016, which has too
high a long-run temperature response.

Therefore climate dynamics matter for economic policy prescriptions. We
do not claim they matter more than other causes célèbres in climate economics
like the social discount rate or the damage function, but matter they do.
Moreover, in contrast to these other issues, on which research is ongoing but
seemingly far from a definitive conclusion, the discrepancies we have identified
between economic models and climate science models can easily be fixed.
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We can readily identify two options. The first is to recalibrate or replace
the climate modules in IAMs. Models of the carbon cycle need to incorpo-
rate positive feedback effects, as FAIR does (Millar et al., 2017). Models of
temperature dynamics need to either be replaced or recalibrated, so that they
can reproduce the fast temperature response of Earth System models to CO2

emissions, as the model of Geoffroy et al. (2013) does. Recall the Geoffroy
et al. model is structurally identical to the DICE climate module, so DICE
would simply need to be recalibrated. Appendix D provides GAMS code to
implement the FAIR-Geoffroy climate in DICE. Other simple models in cli-
mate science may do the same job. None of these changes requires significant
complication of existing IAMs.

The second option is simply to specify temperature as a linear function of
cumulative CO2 emissions (Collins et al., 2013). This is an indirect solution to
the problem, because it turns out that the step temperature impulse response
function and positive carbon cycle feedbacks combine to produce this linear
response in terms of cumulative CO2 emissions (Dietz and Venmans, 2019).20

Appendix E demonstrates this: the CMIP5 models exhibit an approximately
linear warming response to cumulative emissions under various IPCC emissions
scenarios. The IAMs tend not to. The CMIP5 ensemble gives multi-model
mean temperature at time t as 1◦C plus 1.7◦C per trillion tons of cumulative
emissions (TtC) from 2020 onwards. Warming from non-CO2 greenhouse gases
needs to be added on top. The slope coefficient of 1.7◦C/TtC is known as the
Transient Climate Response to Cumulative Carbon Emissions (TCRE).21 As

20Some recent studies that have used this simple relationship to derive economically opti-
mal climate policies are Allen (2016), Brock and Xepapadeas (2017), van der Ploeg (2018),
Manoussi et al. (2018) and Dietz and Venmans (2019).

21The simple formula whereby warming = TCRE x cumulative emissions implies a tem-
perature response function to a CO2 emission impulse that is approximated by a step func-
tion with amplitude equal to the TCRE. The temperature response function that best fits
the CMIP5 ensemble in the experiment reported in Figure 1 has a mean amplitude of
1.72◦C/TtC. This is for an equilibrium climate sensitivity of 3.1◦C. FAIR has a mean am-
plitude of 1.77◦C/TtC under 2015 conditions. Equilibrium climate sensitivity is the largest
source of uncertainty about the TCRE. Matthews et al. (2009) found a 5-95% probability
range of 1.0-2.1◦C/TtC, Allen et al. (2009) found 1.4-2.5◦C/TtC and Gillett et al. (2013)
found 0.7-2.0◦C/TtC based on the CMIP5 ensemble. Based on this and other evidence,
IPCC adopted a ‘likely’ range of 1.0-2.1◦C/TtC (Collins et al., 2013). Recently Nijsse et
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well as being consistent with the climate science models for sound physical
reasons, the linear warming-cumulative CO2 relationship is also very simple
and reduces the number of state variables needed to represent the climate
system, which is advantageous for analytical models in particular.

All the models we have discussed are deterministic. But since the CMIP5
ensemble contains a lot of variation, and there are climate system uncertain-
ties beyond what the CMIP5 ensemble captures, it may be useful to derive
stochastic reduced-form models of the atmospheric carbon stock and temper-
ature dynamics (e.g. van der Ploeg, 2018; Aengenheyster et al., 2018). One
could then find, for example, the carbon budget compatible with a certain
tolerance of overshooting the 2◦C target (e.g. 1/3). Miftakhova et al. (2020)
use a general emulation method for constructing low-dimensional stochastic
approximations of complex climate models. Their best model gives a simple
stochastic linear exponential lag model between temperature and cumulative
CO2 emissions. Alternatively, one could follow Pretis (2020), who builds on
Kaufmann et al. (2011) and shows that energy-balance models of temperatures,
ocean heat content and radiative forcing including greenhouse gases are equiv-
alent to an econometric co-integrated system and can be estimated in discrete
time. He shows that accounting for structural breaks from volcanic eruptions
indicates large parameter uncertainties and that ignoring these breaks can lead
to misleading policy implications due to model mis-specification. The model
can then be used to quantify uncertainties in the dynamics of the atmospheric
carbon stock and temperature.

IAMs tend to abstract from statistical and model uncertainty. We know
that these uncertainties (especially the skewed distribution of the climate sen-
sitivity and the effect of stochastic tipping points) can have large positive im-
pacts on the optimal carbon price. To model such uncertainties properly, one
cannot use the simple linear relationship between temperature and cumulative
emissions, as this does not appear to hold at high temperatures (MacDougall,
2016), whilst in stochastic analysis one is interested in extreme outcomes even

al. (2020) have suggested 1.3-2.1◦C/TtC based on the emerging results from CMIP6, with
a most likely value of 1.68◦C/TtC.
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if they are quite unlikely. Future research should therefore be directed at find-
ing reliable stochastic representations of the inherent statistical and modelling
uncertainties in the CMIP5 ensemble and other ensembles. Only by accounting
for the various forms of uncertainty will it be possible to find climate policies
that are robust and prudent.
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Appendices for online publication

A Climate model experiments

A.1 Experimental protocol behind Figure 1

Figure 1 plots the temperature impulse response of climate science models
and IAMs to an instantaneous emission of CO2 of size 100GtC. We follow the
experimental protocol of Joos et al. (2013). The background concentration of
CO2 in the atmosphere is initialised on the observed 2010 level, i.e. 389ppm
or 829GtC.22 We assume a pre-industrial atmospheric CO2 concentration of
275.8ppm, resulting in an excess concentration of 113.2ppm in 2010.

For each of the 16 carbon cycle models that formed part of the CMIP5
study, the four-box carbon cycle model of Joos et al. (2013) is used as a
reduced-form representation. Joos et al. (2013) document the fitting procedure
and resulting parameter values. The initial excess atmospheric CO2 concen-
tration of 113.2ppm needs to be distributed among the four boxes of the Joos
et al. model. The same need arises for the FAIR model, which shares the same
four-box structure. Moreover, as the Joos et al. model was not designed to
reproduce historical removal of CO2 from the atmosphere (Millar et al., 2017),
it is the FAIR model that we use to initialise the boxes in all of these models.
To do this, we feed historical emissions into FAIR from 1890 to 2010.23 This
results in the following distribution of the initial excess concentration between
the four boxes: 52.9% in box 1; 34.3% in box 2; 11.1% in box 3; 1.6% in box
4.

To keep the atmospheric CO2 concentration constant after 2010, the exper-
imental protocol of Joos et al. (2013) continues to add emissions. We compute
these emissions as follows. The Joos et al. model implies that

ṁi = ψiE − λimi, (8)
22We use a conversion rate of 100GtC = 46.9ppm throughout the paper.
23We obtain emissions between 1890 and 1990 from the EDGAR 1.4 database and between

1990 and 2010 from the SSP database.
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where mi is the carbon stock above pre-industrial in each box i, ψi is the
proportion of emissions that enter each box and λi is the rate of removal of
CO2 from each box by carbon sinks. Constant atmospheric CO2 therefore
requires ∑

i

ṁi = 0⇔ E =
∑
i

λimi. (9)

Substituting (9) into (8) gives a solution for decay in each box:

ṁj = ψj

[∑
i

λimi

]
− λjmj. (10)

As time goes by, carbon is transferred from the fast-decaying boxes in the
model to the permanent box and in the steady state all carbon must be in the
permanent box (i = 1). The same emissions path is used in simulations with
all the carbon cycle models considered here.

The resulting background scenario is compared to a scenario with the same
emissions path, but with an impulse of 100GtC added to the atmosphere
at time zero (the year 2010). The 100GtC is added to each carbon box in
proportion ψi.

The 16 CMIP5 carbon cycle models emulated by Joos et al. (2013) are
then combined with 16 CMIP5 temperature models (i.e. atmosphere-ocean
general circulation models), which are represented in reduced form using the
model of Geoffroy et al. (2013), as described in their paper. We set the cli-
mate sensitivity equal to 3.1◦C in all models.24 This allows us to focus on
temperature inertia in the climate models. For all models, we use 0.85◦C as
initial atmospheric warming relative to pre-industrial in 2010. The initial lower
ocean temperature is 0.22◦C above pre-industrial, obtained by running FAIR
on historical emissions.

We now turn to the IAMs included in Figure 1. We take each of these mod-
els “off the shelf”, except that, in order to be consistently compared following

24DICE assumes a climate sensitivity of 3.1◦C. The mean climate sensitivity in Geoffroy
et al. (2013) is between 3.05◦C and 3.25◦C, according to how models are aggregated (λ ×
TCO2x2 = 3.05◦C while λ× TCO2x2 = 3.25◦C). Default FAIR uses a climate sensitivity of
2.75◦C.
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the experimental protocol of Joos et al. (2013), we ensure all the models are
initialised on the same atmospheric carbon stock and temperature:

• In DICE 2016, the carbon stocks are initialised on the year 2015, when
the atmospheric CO2 concentration is assumed to be 399.4ppm. Hence
we reduce the excess carbon content of the three carbon boxes in DICE
2016 by 9.2% to obtain comparable 2010 initial conditions. We do not
change the initial deep ocean temperature in DICE 2016.

• For the PAGE and FUND models, it is most convenient to slightly ad-
just the timing of the emission impulse so that the background CO2

concentration is 389ppm – 2008 in FUND, 2009 in PAGE.

• For Golosov et al. (2014), we assume that 51.4% of the excess emissions
in 2010 are in the permanent box and 48.6% are in the slow-decaying
box. These numbers are obtained by using the authors’ initial values in
2000 and running their model on historical emissions between 2000 and
2010.

• Gerlagh and Liski (2018) do not explicitly model temperature. CO2

emissions map on to atmospheric concentrations and these in turn map
directly on to damages. They define a common adjustment speed of
temperature and damages in a one-box model. This gives Tt+1 = Tt −
ε(ECS × log2(Mt/M1850)− T ).

• For Lemoine and Rudik (2017), we can directly impute the initial atmo-
spheric CO2 concentration and temperature.

A.2 Variations on Figure 1

Figure 1 plotted the temperature response to an emission impulse of 100GtC,
which is equivalent to about ten years of CO2 emissions from burning fossil
fuels at current rates (Le Quéré et al., 2018). Here we test the robustness
of our findings to the size of the emission impulse by repeating the exper-
iment with a much smaller impulse of 1GtC (Figure 6) and a much bigger
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impulse of 1000GtC (Figure 7). We also test whether our findings hold when
the background atmospheric CO2 concentration is allowed to increase, rather
than being held constant: in Figure 8, we plot the temperature response to
an emission impulse of 100GtC on the IPCC RCP4.5 scenario. According to
RCP4.5, the atmospheric CO2 concentration in 2100 is around 550ppm. Ar-
guably this best captures the world’s current trajectory, absent further efforts
to abate emissions in line with the UN temperature goals.

The temperature impulse response of the climate science models is fast
(c. 10 years from emission to peak warming) in all cases. The corresponding
temperature impulse response of the IAMs is always decades slower. It is
important to point out that when the emission impulse is very large (e.g.
1000GtC as in Figure 7), or the background atmospheric CO2 concentration
is changing (e.g. along RCP4.5 as in Figure 8), carbon cycle feedbacks can
become important in the long run. Hence we see in Figures 7 and 8 that the
impulse response of FAIR deviates from that of Joos et al. (2013) (labelled
the best fit of the CMIP5 ensemble as usual). FAIR is the benchmark in
such experiments. It responds quickly to the emission impulse, but, instead
of levelling of in the long run, temperature slowly increases due to weakening
carbon sinks.
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Figure 6: Dynamic temperature response of 256 climate science models (the
CMIP5 ensemble), FAIR and seven IAMs to an instantaneous 1GtC emis-
sion impulse against a constant background atmospheric CO2 concentration
of 389ppm.
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Figure 7: Dynamic temperature response of 256 climate science models (the
CMIP5 ensemble), FAIR and seven IAMs to an instantaneous 1000GtC emis-
sion impulse against a constant background atmospheric CO2 concentration
of 389ppm.
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Figure 8: Dynamic temperature response of 256 climate science models (the
CMIP5 ensemble), FAIR and seven IAMs to an instantaneous 100GtC emission
impulse on an increasing atmospheric CO2 concentration path. The emission
is added when atmospheric CO2 is 389ppm. Thereafter CO2 emissions increase
according to the IPCC RCP4.5 scenario.
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A.3 Experimental protocol behind Figure 2

Figure 2 relies on the FAIR model. FAIR is identical to the model of Joos et
al. (2013), except the residence time of CO2 in each of the four atmospheric
boxes is modified by a parameter α representing carbon cycle feedbacks. FAIR
calculates α as a function of the integrated CO2 impulse response function
(iIRF) over the first 100 years of the model horizon. Over this period, the
iIRF has a linear relationship with both temperature and cumulative CO2
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emissions absorbed by carbon sinks:

iIRF100 = rpi + rTT + rC

 t∑
s=pi

Es − (Ms −Mpi)
 (11)

where rpi = 34.4 years is the estimated pre-industrial value of iIRF100,
∑t
s=piEs

denotes cumulative CO2 emissions since pre-industrial, rT = 4.165 years/◦C
and rC = 0.019 years/GtC. The assumed relationship between α and iIRF100

in FAIR has no analytical solution, but can be well approximated by fitting
an exponential function, which results in the following solution:

α = 0.0107 exp (0.0866iIRF100) . (12)

Figure 2 shows yearly carbon uptake by sinks as a function of the atmo-
spheric CO2 concentration for constant emissions of 39.1GtCO2 and constant
non-CO2 forcing of 0.181W/m2, which correspond to 2015 forcing in the SSP
database.25 To make the graph, we use 2015 initial conditions, with 263GtC
in the atmosphere (as in DICE) and 0.85◦C warming (also as in DICE). For
FAIR, we use the same relative distribution among the four boxes as above
and 0.28◦C deep ocean warming.

A.4 Experimental protocol behind Figures 3 and 4

Figure 3 is generated using exactly the same procedure as Figure 1, but reports
the difference in atmospheric CO2 concentration instead of the difference in
temperature.

Figure 4 uses the same background scenario as Figure 1. This is compared
to a scenario with a constant CO2 concentration of 436ppm (398ppm+100GtC)
from 2010 onwards.

25Hosted by the IIASA Energy Program at https://tntcat.iiasa.ac.at/SspDb.

50



B Further details on carbon cycle and warm-
ing models

B.1 Linear models of the carbon cycle

The linear carbon cycle is described by n difference equations, where mt is a
vector whose elements contain the amount of carbon in each box at time t, A
is a square matrix of constants and b is a column vector. Let d be the vector
that maps the contents of the various boxes into the stock of atmospheric
carbon, i.e.

Mt ≡ d′mt = d′
[
AtM0 +

t∑
s=1

At−sbEs
]
.

Spectral decomposition yields A = VΛV−1, where the diagonal matrix con-
tains the eigenvalues in decreasing order of magnitude along its diagonal and
the columns of the n x n matrix V contain the linearly independent eigenvec-
tors (assuming all eigenvalues are real and distinct). Given that the columns
of A must sum to one, the first of the n eigenvalues equals 1 and the others
are between zero and one (provided the system is stable). We have

Mt = d′V
[
ΛtV−1M0 +

t∑
s=1

Λt−sV−1bEs
]
.

The effect of a change in the emissions path from some reference path on the
corresponding change in the stock of atmospheric carbon is independent ofM0

and given by

∆Mt = d′V
t∑

s=1
Λt−sV−1b∆Es.

Define d̄ ≡ V′d and b̄ ≡ V−1b, so that

∆Mt =
t∑

s=1

n∑
i=1

ψiλi
t−s∆Es,

where ψi ≡ b̄id̄i is the contribution of each box to the atmospheric carbon
stock and the λi are the eigenvalues of the matrix A. The impulse response
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function shows the effects of a small impulse in the first period only and equals

∆Mt

∆E1
=

n∑
i=1

ψiλi
t−1.

The first eigenvalue is 1 whenever a proportion of emissions ψi stays in the
atmosphere forever. In such cases, the impulse response is the sum of its
permanent and transitory components, i.e.

∆Mt

∆E1
= ψ1 +

n∑
i=2

ψiλi
t−1.

The FUND model

The FUND carbon cycle model, which is based on Maier-Reimer and Hassel-
mann (1987), has 5 boxes with shares of emissions flowing into each of them
equal to b = (0.13, 0.20, 0.32, 0.25, 0.1)′, d = (1, 1, 1, 1, 1)′ and A has diagonal
elements equal to exp(-1/lifetime), where the lifetimes for the 5 boxes are ∞,
363, 74, 17 and 2 years respectively. These correspond to half-lives of ∞, 252,
51, 12 and 1.4 years respectively.

The Golosov et al. (2014) carbon cycle model: 2 boxes

Golosov et al. (2014) have A =
1 0

0 1− ϕ

, b =
 θL

θ0(1− θL)

 and d =
1

1

 ,
where 0 < θL < 1 and 1 − θL are the proportions of emissions that flow into
the boxes holding the permanent and transitory components of atmospheric
carbon respectively, 0 < θ0 < 1 is the proportion of atmospheric carbon in
the transitory box that decays within the span of a unit of time (i.e. within
a decade), and ϕ > 0 denotes the speed of decay of carbon in the transitory
box. Hence Eq. (3) becomes

Mt = m0(1) + (1− ϕ)tm0(2) +
t∑

s=1

[
θL + θ0(1− θL)(1− ϕ)t−s

]
Es,
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where the term in square brackets shows how much of an emission impulse
at time s is left in the atmosphere at time t. Roughly a fifth of carbon stays
up in the atmosphere “forever”, half of an emission impulse is removed after
30 years, and the remaining carbon in the atmosphere has a mean life of 300
years. This yields θL = 0.2, θ0 = 0.393 and ϕ = 0.0228. It follows that the
half-life equals ln(0.5)/ ln(0.9772) = 30 decades. The initial values for 2010
are S0(1) = 684GtC and S0(2) = 118GtC. Our starting date is 2015, so we
update these and use S0(1) = 712GtC and S0(2) = 159GtC instead.

The DICE 2016 carbon cycle model: 3 boxes

The DICE 2016 carbon cycle of Nordhaus (2017) has three boxes: (1) the at-
mosphere, (2) the upper oceans and biosphere, and (3) the lower/deep oceans.
The diffusion matrix is

A =


0.88 0.196 0
0.12 0.797 0.001465

0 0.007 0.998535


and b = d = (1, 0, 0)′. No carbon leaves the system, so the elements of the
columns of A sum to 1. The rate of uptake by the biosphere and oceans is
independent of the amount of carbon stored in each box, so positive feedback
between atmospheric CO2 and CO2 uptake is ruled out. There is no direct
interchange of carbon between the atmosphere and the lower/deep oceans.
The lower/deep oceans can store a large amount of carbon, but the rate of
diffusion into the lower/deep oceans is only 0.007. The eigenvalues of A are
(0.6796, 0.9959, 1) and

V =


0.6991 0.5075 0.3173
−0.7148 0.3002 0.1942
0.0157 −0.8077 0.9282

 ,

so b̄ = (0.5283, 0.8085, 0.6946)′, d̄ = (0.6991, 0.5075, 0.3173)′ and thus the
ψi are 37%, 41% and 22%. Since no carbon leaves the boxes, one of the
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eigenvalues equals 1. The smallest eigenvalue corresponds to a half-life of 9
years (5 x ln(0.5)/ ln(0.6796)) and the middle one corresponds to a half-life of
851 years.

The DICE 2013 carbon cycle model

The DICE 2013 carbon cycle has the same structure as DICE 2016. The
diffusion matrix is

A =


0.912 0.0383 0
0.088 0.9592 0.0003

0 0.0025 0.9997

 .
The eigenvalues of A are (0.8729, 0.99793, 1) and the ψi are 69%, 26% and 5%.
The smallest eigenvalue corresponds to a half-life of 26 years and the middle
one corresponds to a half-life of 1675 years.

The Gerlagh and Liski (2018) carbon cycle model: 3 boxes

Gerlagh and Liski (2018) have boxes for (i) the atmosphere and the upper
oceans, (ii) the biosphere and (iii) the lower oceans. Since within a decade
(their unit of time) carbon mixes perfectly between the atmosphere and the
upper oceans, these are combined into box one. The stock of atmospheric
carbon is a constant share of the contents of box one, i.e. d = (0.914, 0, 0)′.
They have

A =


0.6975 0.2131 0.029
0.1961 0.7869 0
0.1063 0 0.9706


and b = (0.8809, 0.0744, 0.0447)′. The eigenvalues of A are 0.5286, 0.9264 and
1, and we calculate the corresponding ψi to be 44.5%, 18.2% and 16.2%. The
eigenvalues imply that the half-lives for the two temporary boxes are 90 and
11 years respectively.
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The Joos et al. (2013) carbon cycle model: 4 boxes

Joos et al. (2013) use a continuous-time model with one permanent and three
transitory boxes to fit impulse response functions to an ensemble of Earth
System model simulations.26 Their best fit of the CMIP5 ensemble is

A =


1 0 0 0
0 0.9975 0 0
0 0 0.9730 0
0 0 0 0.7927

 ,

b = (0.2173, 0.2240, 0.2824, 0.2763)′ and d = (1, 1, 1, 1)′ on an annual basis.
The mean lags for the temporary boxes are 277, 25 and 3 years. Aengenheyster
et al. (2018) also estimate a 4-box model in continuous time.

The Delay 56 and Delay 112 carbon cycle models use the same values as
Joos et al. (2013) for ψ, but multiply the mean lags by five and ten respectively.
In other words, any point on the impulse response function will be a point on
the Delay 56 (112) impact response function five (ten) years later.

The PAGE model

The PAGE09 carbon cycle model (Hope, 2006, 2011, 2013) can be approxi-
mated using three boxes with shares of emissions flowing into each of them
equal to b = (0.19, 0.43, 0.38)′ and d = (1, 1, 0)′, and A has diagonal elements
equal to exp(-1/lifetime), where the lifetimes for the 3 boxes are∞, 73.33 and
close to 0 years respectively. A feedback from temperature to carbon con-
centration is introduced in PAGE09, which scales up the concentration from
the dynamic system by a ‘gain’ factor to compute forcing in that year. The
gain factor does not, however, influence the evolution of carbon stocks. This
feedback, which models the decreasing absorptive capacity of oceans and po-
tentially that of soil, is a linear relation of temperature (with an uncertain
constant of median 9.67%/◦C). However, a maximum of 53.33% can be added
to the atmospheric carbon concentration.

26In continuous time, their model is ṁ = bE − (A− I) m.
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B.2 Temperature dynamics models

In parallel to the analysis of the carbon cycle above, let temperature be given
by Tt = d′mt, where the vector mt follows from the linear system mt =
Amt−1 + bFt. Using spectral decomposition, A = VΛV−1 and defining d̄ ≡
V′d and b̄ ≡ V′b, we can solve for

Tt = d̄
(

ΛtV−1T0 +
t∑

s=1
Λt−sb̄Fs

)
= d̄′ΛtV−1T0 +

t∑
s=1

2∑
i=1

ψTi λ
T t−s
i Fs,

where ψTi ≡ b̄id̄i, i = 1, 2. It follows that the temperature response to a step
increase in forcing, Fs = ∆F, ∀s ≥ 1, and to an increase in initial temperature,
equals

∆Tt = d̄′ΛtV−1T0 +
[ 2∑
i=1

ψTi
(1− λTi )

(
1− λT ti

)]
∆F.

Note that the effects of initial temperature and a change in forcing can be
added for linear systems (the superposition principle).

Geoffroy et al. (2013)

Geoffroy et al. (2013) have a two-box model for temperature dynamics in
continuous time,

Ṫ = 1
C

[F − λT − γ(T − TLO)]

and
ṪLO = γ

C0
(T − TLO),

where C = 7.3 W yr m-2 K-1 is the effective heat capacity of the upper/mixed
ocean layer, C 0 = 106 W yr m-2 K-1 is the effective heat capacity of the deep
oceans, λ = 1.13 W m-2 K-1 and γ = 0.73 W m-2 K-1. These are the values that
best fit the multi-model mean of the CMIP5 ensemble. There is a box T repre-
senting the mean temperature of the atmosphere, land and upper oceans, and
a box TLO representing the mean temperature of the deep oceans. Steady-state
temperature corresponding to constant forcing F is T = TLO = F/λ, which
gives an equilibrium climate sensitivity or ECS (i.e. the steady-state increase in

56



temperature resulting from doubling the atmospheric stock of CO2 relative to
pre-industrial) of F2×CO2/λ= 3.45/1.13 = 3.05 K given F2×CO2 = 3.45 W m-2.
To get an ECS of 3.1, we adjust by multiplying F2×CO2 by the factor 3.1/3.05
and modify the first equation to Ṫ = 1

C
[(3.1/3.05)F − λT − γ(T − TLO)].

The state transition matrixA =
−(λ+ γ)/C γ/C

γ/C0 −γ/C0

, which has eigen-

values -0.2575 and -0.0041. Using d = (1, 0)′ and b = (1/C, 0)′, we obtain
ψT1 = 0.135 and ψT2 = 0.0015, which gives the following impulse response
function:

∆T (t)
∆F (s) = 0.135 exp(−0.2575(t− s)) + 0.0015 exp(−0.0041(t− s)).

Notice ψT1 is much larger than ψT2 , i.e. the system responds quickly to an
impulse of forcing. Since the lower ocean has a large heat capacity, it quickly
absorbs the extra heat in the atmosphere.

By contrast, the reaction to a step increase in forcing ∆F is slower. The
temperature increase for a step increase in forcing beginning at time s, with a
steady-state temperature effect of ∆F/λ, is

∆T (t)
∆F = 1

λ
[1− 0.523 exp(−0.2575(t− s))− 0.366 exp(−0.0041(t− s))] .

This formula is based on the same eigenvalues, but the relative weight on the
slow box is much larger: ψ̂T1 = 0.523 versus ψ̂T2 = 0.366. With constant forcing,
the deep ocean reaches the same steady-state temperature as the atmosphere,
but, given the large heat capacity of the deep ocean, it takes much longer to
reach.

For the Delay 56 and Delay 112 model versions, we multiply the capacities
C and C0 by factors of 5 and 10 respectively. This does not affect the values of
ψTi . However, the Delay 56 system has eigenvalues of -0.0515 and -0.0008; the
Delay 112 system -0.0258 and -0.0004. In other words, half-lives are multiplied
by 5 and 10 for the Delay 56 and Delay 112 variants respectively.
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DICE 2016

DICE 2016 is formulated in discrete time with a time unit of 5 years and, like
the model of Geoffroy et al. (2013), has two heat boxes, one for the temperature
of the atmosphere, land and upper oceans, and one for the temperature of the
deep oceans:

Tt = Tt−1 + 1
CUP

[
Ft −

3.6813
ECS

Tt−1 − 0.088(Tt−1 − TLO,t−1)
]

and
TLO,t = TLO,t−1 + 0.088

CLO
(Tt−1 − TLO,t−1),

where CUP = 1/0.1005 W yr m-2 K-1 and CLO = 0.088/0.025 W yr m-2 K-1 are
the effective heat capacities of the upper and lower oceans respectively, and
0.088 and 0.025 are the coefficients of heat exchange between the upper and
deep oceans respectively. The steady state temperature is Tt = TLO,t =
ECS × Ft/3.6813 = 0.842Ft, where ECS is set to 3.1 K. The transient cli-

mate sensitivity is set to 1.7 K. The transition matrix A =
0.873 0.009

0.025 0.975

 ,
b = (1/CUP , 0)′ and d = (1, 0)′. This yields eigenvalues 0.871 and 0.977 with
corresponding shares ψT1 = 0.0985 and ψT2 = 0.002. Note that ψT1 + ψT2 =
1/CUP = 0.1005. The temperature response to an impulse in forcing is
∆Tt

∆F1
= 0.0985 × 0.8711t−1 + 0.0022 × 0.9771t−1. The temperature response

to a step increase in forcing at time s equals

∆Tt
∆F =

2∑
i=1

(
ψTi λ

T t
i

1− λT ti

)
= 0.0985× (1− 0.871t)

0.129 + 0.002× (1− 0.977t)
0.003 .

We find that limt→∞
∆Tt

∆F = ∑2
i=1

ψT
i

λT
i
→ 0.0985

0.129 + 0.002
0.003 = 0.8521.

DICE 2013

DICE 2013’s warming model is almost identical to DICE 2016. The transition

matrix is A =
0.863 0.009

0.025 0.975

 . This yields eigenvalues 0.861 and 0.977 with
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corresponding shares ψT1 = 0.0989 and ψT2 = 0.002.

Golosov et al. (2014)

Golosov et al. (2014) have no temperature lag, so they have Tt = 0.842Ft.

Gerlagh and Liski (2018)

Gerlagh and Liski (2018) have a simple lag with partial adjustment of 0.183
per decade (or 2% per year), so they have

Tt = Tt−1 + 0.183 (0.842Ft − Tt−1).

This corresponds to a half-life of 34 years. Although this long lag is in line
with the scientific evidence of some time ago (Solomon et al., 2009), it does
not accord with more recent scientific evidence (e.g Geoffroy et al., 2013).
The resulting temperature response to an impulse in forcing is ∆Tt

∆F1
= 0.842×

0.817t−1. The corresponding response to a step increase in forcing is

∆Tt
∆F = 0.842× 1− 0.817t

0.183 .

FUND

The annual FUND model also has a simple temperature lag, but with a partial
adjustment coefficient of 0.0224 per year, corresponding to a mean lag of 44.6
years and a half-life of 30.6 years.

PAGE

Global mean temperature in PAGE09 is the weighted sum of regional tem-
peratures. Once aggregated, however, global temperature follows a median
life-time of 24 years (and mean of 50 years).
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B.3 Convoluted temperature impulse response function

Equation (9) gives the convoluted temperature impulse response function,
which is derived from the carbon stock impulse response function, the temperature-
forcing response function, and

∂Ts
∂Ms

= F2×CO2

ln 2
1
Ms

.

The temperature response to a small step change in the stock of atmospheric
carbon, ∆Ms = ∆M, ∀M ≥ 0, is thus

∆Tt
∆M = F2×CO2

ln 2
1
M0

∆Tt
∆F

for the Geoffroy et al. (2013) model and

∆Tt
∆M = F2×CO2

ln 2
1
M1

∆Tt
∆F

for the discrete-time models such as DICE. Note that the response to a step
increase in atmospheric carbon decreases in the values of the atmospheric
carbon stock. To calculate these convoluted step responses, we suppose that
the concentration of atmospheric carbon stays constant at its initial value.
Hence we setMs to 3038 GtCO2 or 389 ppmv for all s. For the DICE model we
thus get ∆Tt

∆M = F2×CO2
ln 2

1
M1

∆Tt

∆F = 0.0012585 as t→∞. For a small step change
in atmospheric carbon of 100GtC, the steady-state increase in temperature
would then equal 0.0012585 × 100 × 44/12 = 0.46 K, which is consistent with
the plot in Figure 4.

C Further results

DICE 2016 compared with DICE-FAIR-Geoffroy

Here we compare standard DICE 2016 (row 5) with DICE-FAIR-Geoffroy (row
1). This comparison is affected by differences in: (a) temperature dynamics
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between the DICE 2016 and Geoffroy et al. (2013) models; (b) removal of
atmospheric CO2 between the DICE 2016 and Joos et al. (2013) carbon cy-
cles, and; (c) assumptions about (non-)diminishing marginal removal of atmo-
spheric CO2 between DICE 2016/Joos et al. (2013) and FAIR. Therefore this
comparison is of the combined effect of all the modifications to DICE that we
have identified, which would bring it fully into line with the climate science
models we have assembled.

The combined effect of these is a higher optimal carbon price in DICE 2016
than in DICE-FAIR-Geoffroy (see Figure 5). The 2020 optimal carbon price is
24% higher in DICE 2016. Yet it is on the 2◦C cost-minimising paths that we
see the largest price differences. The 2020 2◦C cost-minimising carbon price
is three times higher in DICE 2016 than in DICE-FAIR-Geoffroy, resulting in
a reduction in 2020 emissions of almost 9GtCO2. Yet, despite lower emissions
throughout this century on both the optimal and 2◦C cost-minimising paths,
temperatures end up being higher in DICE 2016, by more than 0.5◦C in 2100
on the optimal path. The main driver of these differences is the tendency of
DICE 2016 to heat up too much in the long run, as the analysis just below will
show. This is particularly manifest on the 2◦C cost-minimising path, because
heating up too much in the long run makes it extremely difficult to avoid the
global mean temperature exceeding 2◦C above the pre-industrial level.

A method of apportioning the differences between DICE 2016 and DICE-
FAIR-Geoffroy to factors (a) to (c) is to plot the percentage difference in
carbon prices and temperatures – always relative to DICE-FAIR-Geoffroy –
in DICE 2016, DICE-Geoffroy (i.e. combining the DICE 2016 carbon cycle
with the Geoffroy et al. (2013) temperature dynamics model), DICE-Joos (i.e.
combining the Joos et al. (2013) carbon cycle with the DICE 2016 tempera-
ture dynamics model) and DICE-Joos-Geoffroy. Figure 9 does this.27 The way
to intuit this figure is that whichever model is closest to DICE 2016 explains
most of the difference between it and DICE-FAIR-Geoffroy. Hence the main
contributing factor to the difference in optimal carbon prices between DICE

27For this comparison we omit emissions, because when emissions approach or reach zero
the differences between the models can explode or be undefined respectively.
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2016 and DICE-FAIR-Geoffroy is (b) insufficient removal of atmospheric CO2

in DICE 2016 (top left panel). This is a feature shared by DICE 2016 and
DICE-Geoffroy, but not by the other models, which incorporate the four-box
carbon cycle of Joos et al. (2013). However, when it comes to the 2◦C car-
bon price, or temperature on either path, the main contributing factor to the
difference between DICE 2016 and DICE-FAIR-Geoffroy is (a) temperature
dynamics. Excessive delay, offset by excessive long-term warming, is a feature
shared by the DICE 2016 and DICE-Joos variants. Excessive delay and ex-
cessive long-term warming are responsible for the temperature trajectories in
DICE 2016 that start below DICE-FAIR-Geoffroy but end up higher, signifi-
cantly so on the optimal path. Excessive long-term warming also explains the
high 2◦C carbon price, because it significantly limits the 2◦C carbon budget.

Figure 9: Price and temperature paths relative to the benchmark DICE-FAIR-
Geoffroy model. Left column – welfare-maximising path; right column – cost-
effective path to limit warming to 2◦C. Top row – carbon prices; bottom row
– warming. Whichever model is closest to DICE 2016 explains most of the
difference between it and DICE-FAIR-Geoffroy.
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2◦C cost minimisation under different exogenous emissions/forcing
scenarios

Figure 10 shows using DICE-FAIR-Geoffroy that limiting warming to 2◦C is
much more costly when exogenous CO2 emissions/forcing come from standard
DICE 2016 than when they come from the IPCC’s RCP2.6 scenario. The
former scenario was designed to apply no matter the amount of CO2 emissions
abatement undertaken in the model (i.e. from the energy sector), while the
latter was designed by IPCC to imply a level of abatement outside CO2/energy
that is consistent with the 2◦C goal. Limiting warming to 2◦C is infeasible in
DICE 2016 with standard DICE 2016 exogenous emissions/forcing.

Figure 10: 2◦C cost-minimising carbon prices in DICE-FAIR-Geoffroy using
two alternative scenarios for emissions of CO2 from land use and forestry, and
exogenous radiative forcing from other greenhouse gases and agents. Carbon
prices are much higher under the standard DICE 2016 scenario than under the
RCP2.6 scenario.
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D GAMS code for DICE 2016 with the FAIR
carbon cycle and the Geoffroy et al. (2013)
temperature model

In this section we provide GAMS code to implement the FAIR carbon cycle
in DICE 2016, as well as parameters to implement the Geoffroy et al. (2013)
warming model. This replaces the three-box model of the carbon cycle and
the two-box temperature model of standard DICE 2016.

64



$ontext 

This is a modified version of DICE-2016R-091916ap.gms. 

The carbon cycle has been changed to the four box model of Joos et al. and parameters of thermal 

dynamics to match Geoffroy et al. The positive feedback from sink satiation has been added. See 

**-comments for details throughout. 

 

$title        DICE-2016R September 2016 (DICE-2016R-091216a.gms) 

$offtext 

 

set        t  Time periods (5 years per period)                    /1*100/ 

 

PARAMETERS 

** Availability of fossil fuels 

        fosslim  Maximum cumulative extraction fossil fuels (GtC)  /6000/ 

**Time Step 

        tstep    Years per Period                                  /5/ 

** If optimal control 

        ifopt    Indicator where optimized is 1 and base is 0      /0/ 

        ifmiulim Indicator where fixed miu('1') is 1 and 0 else    /1/ 

** Preferences 

        elasmu   Elasticity of marginal utility of consumption     /1.45 / 

        prstp    Initial rate of social time preference per year   /.015  / 

**new parameters for public decision making 

        elasmu_pub   Elasticity of marginal utility of consumption     /1.45 / 

        prstp_pub    Initial rate of social time preference per year   /.015  / 

 

** Population and technology 

        gama     Capital elasticity in production function        /.300    / 

        pop0     Initial world population 2015 (millions)         /7403    / 

        popadj   Growth rate to calibrate to 2050 pop projection  /0.134   / 

        popasym  Asymptotic population (millions)                 /11500   / 

        dk       Depreciation rate on capital (per year)          /.100    / 

        q0       Initial world gross output 2015 (trill 2010 USD) /105.5   / 

        k0       Initial capital value 2015 (trill 2010 USD)      /223     / 

        a0       Initial level of total factor productivity       /5.115    / 

        ga0      Initial growth rate for TFP per 5 years          /0.076   / 

        dela     Decline rate of TFP per 5 years                  /0.005   / 

** Emissions parameters 

        gsigma1  Initial growth of sigma (per year)                   /-0.0152 / 

        dsig     Decline rate of decarbonization (per period)         /-0.001  / 

        eland0   Carbon emissions from land 2015 (GtCO2 per year)     / 2.6    / 

        deland   Decline rate of land emissions (per period)          / .115   / 

        e0       Industrial emissions 2015 (GtCO2 per year)           /35.85    / 

        miu0     Initial emissions control rate for base case 2015    /.03     / 

** Carbon cycle 

** new carbon cycle replaces DICE's oceanic carbon reservoirs with four atmospheric carbon 

boxes. Transition matrix is diagonal since it is a reduced-form model. 

$ontext 

* Initial Conditions 

        mat0   Initial Concentration in atmosphere 2015 (GtC)        /851    / 

        mu0    Initial Concentration in upper strata 2015 (GtC)      /460    / 

        ml0    Initial Concentration in lower strata 2015 (GtC)      /1740   / 

        mateq  Equilibrium concentration atmosphere  (GtC)           /588    / 

        mueq   Equilibrium concentration in upper strata (GtC)       /360    / 

        mleq   Equilibrium concentration in lower strata (GtC)       /1720   / 

* Flow paramaters 

        b12      Carbon cycle transition matrix                      /.12   / 

        b23      Carbon cycle transition matrix                      /0.007 / 

* These are for declaration and are defined later 

        b11      Carbon cycle transition matrix 

        b21      Carbon cycle transition matrix 

        b22      Carbon cycle transition matrix 

        b32      Carbon cycle transition matrix 

        b33      Carbon cycle transition matrix 

$offtext 

        mperm0 Initial stock in fastes carbon box (GtC)              /139.1 / 

        mslow0 Initial stock in fastes carbon box (GtC)              /90.2  / 

        mmedium0 Initial stock in fastes carbon box (GtC)            /29.2  / 

        mfast0 Initial stock in fastes carbon box (GtC)              /4.2   / 

        b10      proportion of emissions in permanent box            /.217   / 

        b11      proportion of emissions in slowes box               /.224   / 

        b12      proportion of emissions in medium box               /.282   / 

        b13      proportion of emissions in fast box                 /.276   / 

        b21      Decay speed slowest box                             /.00254 / 

        b22      Decay speed medium box                              /.0274  / 

        b23      Decay speed fast box                                /.232342 / 

** The following three parameters are needed for positive feedback. 

        R0       pre-industrial iIRF                                 / 34.4   / 



        RC       iIRF response to CACC(GtC)                          / 0.019  / 

        RT       iIRF response to T(°C)                              / 4.165  / 

** End of changes.         

        sig0     Carbon intensity 2010 (kgCO2 per output 2005 USD 2010) 

** Climate model parameters 

        t2xco2   Equilibrium temp impact (oC per doubling CO2)    / 3.1  / 

        fex0     2015 forcings of non-CO2 GHG (Wm-2)              / 0.5  / 

        fex1     2100 forcings of non-CO2 GHG (Wm-2)              / 1.0  / 

        tocean0  Initial lower stratum temp change (C from 1900)  /.0068 / 

        tatm0    Initial atmospheric temp change (C from 1900)    /0.85  / 

        c1       Climate equation coefficient for upper level     /0.1005  / 

        c3       Transfer coefficient upper to lower stratum      /0.088   / 

        c4       Transfer coefficient for lower level             /0.025   / 

        fco22x   Forcings of equilibrium CO2 doubling (Wm-2)      /3.6813  / 

** Climate damage parameters 

        a10       Initial damage intercept                         /0       / 

        a20       Initial damage quadratic term 

        a1        Damage intercept                                 /0       / 

        a2        Damage quadratic term                            /0.00236 / 

        a3        Damage exponent                                  /2.00    / 

** Abatement cost 

        expcost2  Exponent of control cost function               / 2.6  / 

        pback     Cost of backstop 2010$ per tCO2 2015            / 550  / 

        gback     Initial cost decline backstop cost per period   / .025 / 

        limmiu    Upper limit on control rate after 2150          / 1.2 / 

        tnopol    Period before which no emissions controls base  / 45   / 

        cprice0   Initial base carbon price (2010$ per tCO2)      / 2    / 

        gcprice   Growth rate of base carbon price per year       /.02   / 

 

** Scaling and inessential parameters 

* Note that these are unnecessary for the calculations 

* They ensure that MU of first period's consumption =1 and PV cons = PV utilty 

        scale1      Multiplicative scaling coefficient           /0.0302455265681763 / 

        scale2      Additive scaling coefficient                 /-10993.704/ ; 

 

* Program control variables 

sets     tfirst(t), tlast(t), tearly(t), tlate(t); 

 

PARAMETERS 

        l(t)          Level of population and labor 

        al(t)         Level of total factor productivity 

        sigma(t)      CO2-equivalent-emissions output ratio 

        rr(t)         Average utility social discount rate 

        ga(t)         Growth rate of productivity from 

        forcoth(t)    Exogenous forcing for other greenhouse gases 

        gl(t)         Growth rate of labor 

        gcost1        Growth of cost factor 

        gsig(t)       Change in sigma (cumulative improvement of energy efficiency) 

        etree(t)      Emissions from deforestation 

        cumetree(t)   Cumulative from land 

        cost1(t)      Adjusted cost for backstop 

        lam           Climate model parameter 

        gfacpop(t)    Growth factor population 

        pbacktime(t)  Backstop price 

        optlrsav      Optimal long-run savings rate used for transversality 

        scc(t)        Social cost of carbon 

        cpricebase(t) Carbon price in base case 

        photel(t)     Carbon Price under no damages (Hotelling rent condition) 

        ppm(t)        Atmospheric concentrations parts per million 

        atfrac(t)     Atmospheric share since 1850 

        atfrac2010(t)     Atmospheric share since 2010 ; 

* Program control definitions 

        tfirst(t) = yes$(t.val eq 1); 

        tlast(t)  = yes$(t.val eq card(t)); 

* Parameters for long-run consistency of carbon cycle 

** These calculations specify DICE's transition matrix in carbon cycle. They are not needed 

anymore. 

$ontext 

        b11 = 1 - b12; 

        b21 = b12*MATEQ/MUEQ; 

        b22 = 1 - b21 - b23; 

        b32 = b23*mueq/mleq; 

        b33 = 1 - b32 ; 

$offtext 

** End of changes 

* Further definitions of parameters 

        a20 = a2; 

        sig0 = e0/(q0*(1-miu0)); 



        lam = fco22x/ t2xco2; 

        l("1") = pop0; 

        loop(t, l(t+1)=l(t);); 

        loop(t, l(t+1)=l(t)*(popasym/L(t))**popadj ;); 

 

        ga(t)=ga0*exp(-dela*5*((t.val-1))); 

        al("1") = a0; loop(t, al(t+1)=al(t)/((1-ga(t)));); 

        gsig("1")=gsigma1; loop(t,gsig(t+1)=gsig(t)*((1+dsig)**tstep) ;); 

        sigma("1")=sig0;   loop(t,sigma(t+1)=(sigma(t)*exp(gsig(t)*tstep));); 

 

        pbacktime(t)=pback*(1-gback)**(t.val-1); 

        cost1(t) = pbacktime(t)*sigma(t)/expcost2/1000; 

 

        etree(t) = eland0*(1-deland)**(t.val-1); 

        cumetree("1")= 100; loop(t,cumetree(t+1)=cumetree(t)+etree(t)*(5/3.666);); 

 

        rr(t) = 1/((1+prstp_pub)**(tstep*(t.val-1))); 

        forcoth(t) = fex0+ (1/17)*(fex1-fex0)*(t.val-1)$(t.val lt 18)+ (fex1-fex0)$(t.val ge 

18); 

        optlrsav = (dk + .004)/(dk + .004*elasmu + prstp)*gama; 

 

*Base Case Carbon Price 

        cpricebase(t)= cprice0*(1+gcprice)**(5*(t.val-1)); 

 

VARIABLES 

        MIU(t)          Emission control rate GHGs 

        FORC(t)         Increase in radiative forcing (watts per m2 from 1900) 

        TATM(t)         Increase temperature of atmosphere (degrees C from 1900) 

        TOCEAN(t)       Increase temperatureof lower oceans (degrees C from 1900) 

        MAT(t)          Carbon concentration increase in atmosphere (GtC from 1750) 

** Old variables are moved and new ones introduced below 

$ontext 

        MU(t)           Carbon concentration increase in shallow oceans (GtC from 1750) 

        ML(t)           Carbon concentration increase in lower oceans (GtC from 1750) 

$offtext 

        MPERM(t)        Carbon concentration increase in permanent box (GtC from 1750) 

        MSLOW(t)        Carbon concentration increase in slow decay box (GtC from 1750) 

        MMEDIUM(t)      Carbon concentration increase in medium decay box (GtC from 1750) 

        MFAST(t)        Carbon concentration increase in fast decay box (GtC from 1750) 

        CACC(t)         Carbon accumulated minus past satiation (GtC) 

        iIRF(T)         100-year integrated impulse response function 

        alpha(T)        time constant scaling factor (positive feed-back from emissions to 

reduced carbon decay) 

** End of changes  

        E(t)            Total CO2 emissions (GtCO2 per year) 

        EIND(t)         Industrial emissions (GtCO2 per year) 

        C(t)            Consumption (trillions 2005 US dollars per year) 

        K(t)            Capital stock (trillions 2005 US dollars) 

        CPC(t)          Per capita consumption (thousands 2005 USD per year) 

        I(t)            Investment (trillions 2005 USD per year) 

        S(t)            Gross savings rate as fraction of gross world product 

        RI(t)           Real interest rate (per annum) 

        Y(t)            Gross world product net of abatement and damages (trillions 2005 USD per 

year) 

        YGROSS(t)       Gross world product GROSS of abatement and damages (trillions 2005 USD 

per year) 

        YNET(t)         Output net of damages equation (trillions 2005 USD per year) 

        DAMAGES(t)      Damages (trillions 2005 USD per year) 

        DAMFRAC(t)      Damages as fraction of gross output 

        ABATECOST(t)    Cost of emissions reductions  (trillions 2005 USD per year) 

        MCABATE(t)      Marginal cost of abatement (2005$ per ton CO2) 

        CCA(t)          Cumulative industrial carbon emissions (GTC) 

        CCATOT(t)       Total carbon emissions (GtC) 

        PERIODU(t)      One period utility function 

        CPRICE(t)       Carbon price (2005$ per ton of CO2) 

        CEMUTOTPER(t)   Period utility 

        UTILITY         Welfare function; 

 

** Obsolete variables MU and ML have been removed in the declaration of non-negative variables 

below. Additional ones are introduced to reflect new carbon dynamics. 

* NONNEGATIVE VARIABLES  MIU, TATM, MAT, MU, ML, Y, YGROSS, C, K, I; 

NONNEGATIVE VARIABLES  MIU, TATM, MAT, Y, YGROSS, C, K, I; 

NONNEGATIVE VARIABLES  MPERM, MSLOW, MMEDIUM, MFAST, alpha; 

 

EQUATIONS 

*Emissions and Damages 

        EEQ(t)           Emissions equation 

        EINDEQ(t)        Industrial emissions 



        CCACCA(t)        Cumulative industrial carbon emissions 

        CCATOTEQ(t)        Cumulative total carbon emissions 

        FORCE(t)         Radiative forcing equation 

        DAMFRACEQ(t)     Equation for damage fraction 

        DAMEQ(t)         Damage equation 

        ABATEEQ(t)       Cost of emissions reductions equation 

        MCABATEEQ(t)     Equation for MC abatement 

        CARBPRICEEQ(t)   Carbon price equation from abatement 

 

*Climate and carbon cycle 

        MMAT(t)          Atmospheric concentration equation 

** Old carbon cycle equations are removed and new equations for carbon boxes and accounting for 

past sink satiation introduced. 

$ontext 

        MMU(t)           Shallow ocean concentration 

        MML(t)           Lower ocean concentration 

$offtext 

        MMPERM(t)        Permanent carbon box 

        MMSLOW(t)        Slow decay carbon box 

        MMMEDIUM(t)      Medium decay speed carbon box 

        MMFAST(t)        Fast decay carbon box 

        CACCEQ(t)        Cumulative carbon emissions(t) 

        iIRFeq1(t)       calibraton of IRF to 100 year impulse 

        iIRFeq2(t) 

** End of changes 

        TATMEQ(t)        Temperature-climate equation for atmosphere 

        TOCEANEQ(t)      Temperature-climate equation for lower oceans 

 

*Economic variables 

        YGROSSEQ(t)      Output gross equation 

        YNETEQ(t)        Output net of damages equation 

        YY(t)            Output net equation 

        CC(t)            Consumption equation 

        CPCE(t)          Per capita consumption definition 

        SEQ(t)           Savings rate equation 

        KK(t)            Capital balance equation 

        RIEQ(t)          Interest rate equation 

 

* Utility 

        CEMUTOTPEREQ(t)  Period utility 

        PERIODUEQ(t)     Instantaneous utility function equation 

        UTIL             Objective function      ; 

 

** Equations of the model 

*Emissions and Damages 

 eeq(t)..             E(t)           =E= EIND(t) + etree(t); 

 eindeq(t)..          EIND(t)        =E= sigma(t) * YGROSS(t) * (1-(MIU(t))); 

 ccacca(t+1)..        CCA(t+1)       =E= CCA(t)+ EIND(t)*5/3.666; 

 ccatoteq(t)..        CCATOT(t)      =E= CCA(t)+cumetree(t); 

 force(t)..           FORC(t)        =E= fco22x * ((log((MAT(t)/588.000))/log(2))) + forcoth(t); 

 damfraceq(t) ..      DAMFRAC(t)     =E= (a1*TATM(t))+(a2*TATM(t)**a3) ; 

 dameq(t)..           DAMAGES(t)     =E= YGROSS(t) * DAMFRAC(t); 

 abateeq(t)..         ABATECOST(t)   =E= YGROSS(t) * cost1(t) * (MIU(t)**expcost2); 

 mcabateeq(t)..       MCABATE(t)     =E= pbacktime(t) * MIU(t)**(expcost2-1); 

 carbpriceeq(t)..     CPRICE(t)      =E= pbacktime(t) * (MIU(t))**(expcost2-1); 

 

*Climate and carbon cycle 

** New carbon cycle removes old equations and introduces new equations for carbon boxes, 

cumulative emissions, and saturation of sinks 

$ontext 

 mmat(t+1)..          MAT(t+1)       =E= MAT(t)*b11 + MU(t)*b21 + (E(t)*(5/3.666)); 

 mml(t+1)..           ML(t+1)        =E= ML(t)*b33  + MU(t)*b23; 

 mmu(t+1)..           MU(t+1)        =E= MAT(t)*b12 + MU(t)*b22 + ML(t)*b32; 

$offtext 

 mmat(t)..            MAT(t)         =E= MPERM(t) + MSLOW(t) + MMEDIUM(t) +  MFAST(t) + 588  ; 

 mmperm(t+1)..        MPERM(t+1)     =E= b10*5/3.666 * E(t) + MPERM(t) ; 

 mmslow(t+1)..        MSLOW(t+1)     =E= b11/(b21/alpha(t)) *(1-exp(-b21/alpha(t)*5))/3.666 * 

E(t) + exp(-b21/alpha(t)*5)*MSLOW(t) ; 

 mmmedium(t+1)..      MMEDIUM(t+1)   =E= b12/(b22/alpha(t)) *(1-exp(-b22/alpha(t)*5))/3.666 * 

E(t) + exp(-b22/alpha(t)*5)*MMEDIUM(t) ; 

 mmfast(t+1)..        MFAST(t+1)     =E= b13/(b23/alpha(t)) *(1-exp(-b23/alpha(t)*5))/3.666 * 

E(t) + exp(-b23/alpha(t)*5)*MFAST(t) ; 

 cacceq(t)..          CACC(t)        =E= CCA(t) + cumetree(t) - (MAT(T) - 588) ; 

 iIRFeq1(T)..         iIRF(T)        =E= R0 + RC*CACC(T) + RT*TATM(T) ; 

 iIRFeq2(T)..         iIRF(T)        =E= b10 * 100 + alpha(t) * ( 

                                         + b11 / b21 * ( 1 - exp( -100*b21/alpha(t) ) ) 

                                         + b12 / b22 * ( 1 - exp( -100*b22/alpha(t) ) ) 

                                         + b13 / b23 * ( 1 - exp( -100*b23/alpha(t) ) )   ); 



** End of changes 

 tatmeq(t+1)..        TATM(t+1)      =E= TATM(t) + c1 * ((FORC(t+1)-(fco22x/t2xco2)*TATM(t))-

(c3*(TATM(t)-TOCEAN(t)))); 

 toceaneq(t+1)..      TOCEAN(t+1)    =E= TOCEAN(t) + c4*(TATM(t)-TOCEAN(t)); 

 

*Economic variables 

 ygrosseq(t)..        YGROSS(t)      =E= (al(t)*(L(t)/1000)**(1-GAMA))*(K(t)**GAMA); 

 yneteq(t)..          YNET(t)        =E= YGROSS(t)*(1-damfrac(t)); 

 yy(t)..              Y(t)           =E= YNET(t) - ABATECOST(t); 

 cc(t)..              C(t)           =E= Y(t) - I(t); 

 cpce(t)..            CPC(t)         =E= 1000 * C(t) / L(t); 

 seq(t)..             I(t)           =E= S(t) * Y(t); 

 kk(t+1)..            K(t+1)         =L= (1-dk)**tstep * K(t) + tstep * I(t); 

 rieq(t+1)..          RI(t)          =E= (1+prstp_pub) * (CPC(t+1)/CPC(t))**(elasmu_pub/tstep) - 

1; 

 

*Utility 

 cemutotpereq(t)..    CEMUTOTPER(t)  =E= PERIODU(t) * L(t) * rr(t); 

 periodueq(t)..       PERIODU(t)     =E= ((C(T)*1000/L(T))**(1-elasmu_pub)-1)/(1-elasmu_pub)-1; 

 util..               UTILITY        =E= tstep * scale1 * sum(t,  CEMUTOTPER(t)) + scale2 ; 

 

*Resource limit 

CCA.up(t)       = fosslim; 

 

* Control rate limits 

MIU.up(t)            = limmiu; 

MIU.up(t)$(t.val<30) = 1; 

 

**  Upper and lower bounds for stability 

K.LO(t)         = 1; 

MAT.LO(t)       = 10; 

** following two bounds are obsolete 

*MU.LO(t)        = 100; 

*ML.LO(t)        = 1000; 

C.LO(t)         = 2; 

TOCEAN.UP(t)    = 20; 

TOCEAN.LO(t)    = -1; 

TATM.UP(t)      = 20; 

CPC.LO(t)       = .01; 

TATM.UP(t)      = 12; 

 

* Control variables 

set lag10(t) ; 

lag10(t) =  yes$(t.val gt card(t)-10); 

S.FX(lag10(t)) = optlrsav; 

 

* Initial conditions 

CCA.FX(tfirst)    = 400; 

K.FX(tfirst)      = k0; 

** following three initial conditions are obsolete and new ones introduced. 

*MAT.FX(tfirst)    = mat0; 

*MU.FX(tfirst)     = mu0; 

*ML.FX(tfirst)     = ml0; 

MPERM.FX(tfirst)    = MPERM0; 

MSLOW.FX(tfirst)    = MSLOW0; 

MMEDIUM.FX(tfirst)  = MMEDIUM0; 

MFAST.FX(tfirst)    = MFAST0; 

** End of Changes 

TATM.FX(tfirst)   = tatm0; 

TOCEAN.FX(tfirst) = tocean0; 

 

** Solution options 

option iterlim = 99900; 

option reslim = 99999; 

option solprint = on; 

option limrow = 0; 

option limcol = 0; 

model  CO2 /all/; 

 

** Variables changed to match thermal warming of Geoffroy et al. 

c1  = 0.386 ; 

lam = 1.13  ; 

c3  = 0.73  ; 

c4  = 0.034 ; 

fco22x = 3.503; 

alpha.lo(t) = .1; 

alpha.up(t) = 1000; 

** Exogenous forcing components (variables etree and forcoth) are adapted to SSP1 2.6. 



Parameter etree_DICE, forcoth_DICE; 

etree_DICE(T)  = etree(T); 

forcoth_DICE(T)= forcoth(T); 

Parameter etree_SSP1_26, forcoth_SSP1_26; 

 

forcoth_SSP1_26(T)              =  0.297 ; 

forcoth_SSP1_26(T)$(T.val GE 2) =  0.393 ; 

forcoth_SSP1_26(T)$(T.val GE 4) =  0.497 ; 

forcoth_SSP1_26(T)$(T.val GE 6) =  0.468 ; 

forcoth_SSP1_26(T)$(T.val GE 8) =  0.402 ; 

forcoth_SSP1_26(T)$(T.val GE 10)=  0.342 ; 

forcoth_SSP1_26(T)$(T.val GE 12)=  0.302 ; 

forcoth_SSP1_26(T)$(T.val GE 14)=  0.274 ; 

forcoth_SSP1_26(T)$(T.val GE 16)=  0.255 ; 

forcoth_SSP1_26(T)$(T.val GE 18)=  0.257 ; 

 

etree_SSP1_26(T)              =  3517.440/1000; 

etree_SSP1_26(T)$(T.val GE 2) =  3178.329/1000; 

etree_SSP1_26(T)$(T.val GE 4) =   188.063/1000; 

etree_SSP1_26(T)$(T.val GE 6) = - 387.799/1000; 

etree_SSP1_26(T)$(T.val GE 8) = -1758.623/1000; 

etree_SSP1_26(T)$(T.val GE 10)= -2586.615/1000; 

etree_SSP1_26(T)$(T.val GE 12)= -2583.968/1000; 

etree_SSP1_26(T)$(T.val GE 14)= -2436.902/1000; 

etree_SSP1_26(T)$(T.val GE 16)= -2084.681/1000; 

etree_SSP1_26(T)$(T.val GE 18)= -2899.036/1000; 

 

display etree_DICE, etree_SSP1_26, forcoth_DICE, forcoth_SSP1_26; 

etree(T) = etree_SSP1_26(T); 

forcoth(T) = forcoth_SSP1_26(T); 

** End of changes 

 

* For base run, this subroutine calculates Hotelling rents 

* Carbon price is maximum of Hotelling rent or baseline price 

* The cprice equation is different from 2013R. Not sure what went wrong. 

If (ifopt eq 0, 

       a2 = 0; 

       solve CO2 maximizing UTILITY using nlp; 

       photel(t)=cprice.l(t); 

       a2 = a20; 

); 

 

cprice.up(t)$(ifopt=0 and t.val<tnopol+1) = max(photel(t),cpricebase(t)); 

miu.fx('1')$(ifopt=1 and ifmiulim=1) = miu0; 

miu.lo('1')$(ifmiulim=0) = 0; 

miu.up('1')$(ifmiulim=0) = 1; 

 

solve co2 maximizing utility using nlp; 

solve co2 maximizing utility using nlp; 

solve co2 maximizing utility using nlp; 

 

cprice.up(t) = inf; 

miu.lo(t) = 0; 

miu.up(t)            = limmiu; 

miu.up(t)$(t.val<30) = 1; 

 

** POST-SOLVE 

** Output reported has been removed. 

 

** Optimal Solution 

ifopt = 1; 

cprice.up(t)$(ifopt=0 and t.val<tnopol+1) = max(photel(t),cpricebase(t)); 

miu.fx('1')$(ifopt=1 and ifmiulim=1) = miu0; 

miu.lo('1')$(ifmiulim=0) = 0; 

miu.up('1')$(ifmiulim=0) = 1; 

solve co2 maximizing utility using nlp; 

solve co2 maximizing utility using nlp; 

solve co2 maximizing utility using nlp; 

cprice.up(t) = inf; 

 

** 2°C target 

TATM.up(T) = 2; 

TATM.FX(tfirst)   = tatm0; 

solve co2 maximizing utility using nlp; 

solve co2 maximizing utility using nlp; 

solve co2 maximizing utility using nlp; 

TATM.up(T) = 12; 

TATM.FX(tfirst)   = tatm0; 



 

** 2°C Target without any climate damage  

ifopt = 1; 

TATM.up(T) = 2; 

TATM.FX(tfirst)   = tatm0; 

a2 = 0; 

solve co2 maximizing utility using nlp; 

solve co2 maximizing utility using nlp; 

solve co2 maximizing utility using nlp; 

a2 = a20; 

TATM.up(T) = 12; 

TATM.FX(tfirst)   = tatm0; 



E Warming as a function of cumulative CO2

emissions

Here we compare the multi-model mean response of the CMIP5 climate science
models to the IAMs, scrutinising the relationship between warming and cu-
mulative CO2 emissions. All the models are fed with emissions from the IPCC
RCP scenarios, including both CO2 and other greenhouse gases and forcing
agents. The CMIP5 multi-model mean response is obtained from Stocker et al.
(2013). The CMIP5 response is quasi-linear. By contrast, most of the IAMs
produce a convex response, with warming increasing more than proportion-
ately as a function of cumulative CO2 emissions, except for the high emissions
RCP8.5 scenario and except for the Golosov et al. (2014) model. FAIR is a
reasonably close approximation of the complex CMIP5 models.

Figure 11: Warming in response to cumulative CO2 emissions, comparing the
CMIP5 multi-model mean with DICE 2016
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Figure 12: Warming in response to cumulative CO2 emissions, comparing the
CMIP5 multi-model mean with FUND
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Figure 13: Warming in response to cumulative CO2 emissions, comparing the
CMIP5 multi-model mean with PAGE
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Figure 14: Warming in response to cumulative CO2 emissions, comparing the
CMIP5 multi-model mean with Golosov et al. (2014)
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Figure 15: Warming in response to cumulative CO2 emissions, comparing the
CMIP5 multi-model mean with Gerlagh and Liski (2018)
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Figure 16: Warming in response to cumulative CO2 emissions, comparing the
CMIP5 multi-model mean with Lemoine and Rudik (2017)
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Figure 17: Warming in response to cumulative CO2 emissions, comparing the
CMIP5 multi-model mean with FAIR
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